Introduction to Chiral Perturbation Theory

Oliver Bär Humboldt-Universität zu Berlin

> EuroPLEx web-school Oct 23 2020

Summary of last week

Quark masses break chiral symmetries, but an effective low-energy theory (ChPT) can still be set up for small quark masses

For small m_q

- O there is still a mass gap between the pseudo NGBs and the rest of the spectrum
- O the interaction between the pseudo NGBs is proportional to the 4-momentum p_{μ} and the quark masses m_{q}
- The effective theory (ChPT)
 - only contains the pseudo NGBs as active degrees of freedom
 - O is a perturbative expansion in powers of p_{μ} and m_{q}
 - reproduces the symmetries of QCD, i.e. the chiral Ward identities

Summary of last week

Leading order (LO) chiral Lagrangian

$$\mathcal{L}_2 = \frac{f^2}{4} \operatorname{tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right] + \frac{f^2 B}{2} \operatorname{tr} \left[M U^{\dagger} + U M^{\dagger} \right]$$

contains

- a term with two derivatives, $O(p^2)$
- a term with one quark mass, $O(m_q)$ (recall $p^2 = M^2 \propto m_q$)
- two low-energy coefficients (LECs) f, B not determined by chiral symmetry
- the external source fields v, a if $\partial_{\mu} \rightarrow \nabla_{\mu}$
- Next-to-leading order (NLO) Gasser-Leutwyler Lagrangian contains
 - the terms of $O(p^4, p^2 m_q m_q^2)$
 - has 8 LECs not determined by chiral symmetry
 10 + 2 including source fields for SU(3), 7 + 3 for SU(2) ChPT

Outline Part 3

- ChPT to one loop
- The Gasser-Leutwyler coefficients
- Systematics of the chiral expansion (Weinberg's power counting theorem)
- Some loose ends

ChPT to one loop

Loops

Why loops?

Tree level scattering amplitudes computed with L₂ + L₄ are still real We need an imaginary part (optical theorem) to guarantee unitarity
We need loop contributions with vertices from the LO Lagrangian L₂
The loop contribution with L₂ vertices also contributes at O(p⁴)

$$\begin{array}{c} & & \\ & &$$

Explicit example: I-loop calculation of the pion mass

For simplicity:

Consider SU(2) ChPT

- Assume isospin symmetry: $m_u = m_d = m$
 - → 3 mass degenerate pions with tree level mass $M_0^2 = 2Bm$

Step I: Interaction vertices, expand \mathcal{L}_2 in pion fields

$$i\mathcal{L}_{2,4\pi} = \frac{i}{6f^2} \left(-\partial_\mu \pi_3 \partial^\mu \pi_3 (\pi_1 \pi_1 + \pi_2 \pi_2) - \pi_3 \pi_3 (\partial_\mu \pi_1 \partial^\mu \pi_1 + \partial_\mu \pi_2 \partial^\mu \pi_2) \right) \dots$$

$$-4p^2 \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - M_0^2 + i\epsilon} -4 \int \frac{d^4k}{(2\pi)^4} \frac{ik^2}{k^2 - M_0^2 + i\epsilon}$$

$$\equiv \tilde{J}_1(M_0) \equiv \tilde{J}_2(M_0)$$

$$+ \frac{iM_0^2}{24f^2} \left(\pi_3^4 + 2\pi_3^2(\pi_1^2 + \pi_2^2) \right) + \dots$$

$$20\tilde{J}_1(M_0)$$

$$-i\Delta M_{\text{loop}}^2 = \frac{i}{6f^2} \left((-4p^2 + 5M_0^2)\tilde{J}_1(M_0) - 4\tilde{J}_2(M_0) \right)$$

Step 2: Dimensional regularisation

$$\begin{split} \tilde{J}_1(M_0) &= \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - M_0^2 + i\epsilon} & \stackrel{\text{D dim,Wick}}{\longrightarrow} & A_0(M_0) = -\frac{M_0^2}{16\pi^2} \left(\Delta + 1 - \ln M_0^2 \right) \\ & \Delta = \frac{2}{\epsilon} - \gamma + \ln 4\pi \\ \tilde{J}_2(M_0) &= \int \frac{d^4k}{(2\pi)^4} \frac{i k^2}{k^2 - M_0^2 + i\epsilon} & \stackrel{\text{D dim,Wick}}{\longrightarrow} & M_0^2 A_0(M_0) & \epsilon = 4 - D \end{split}$$

$$\Delta M_{\text{loop}}^2 = \frac{1}{96\pi^2} \left(-4\frac{p^2 M_0^2}{f^2} + \frac{M_0^4}{f^2} \right) \left(\Delta + 1 - \ln M_0^2 \right)$$

Step 3: The \mathcal{L}_4 tree contribution

Expand \mathcal{L}_4 in pion fields and collect terms quadratic in π_3

e.g.
$$\mathcal{L}_{4,L_6} = L_6 \left[\operatorname{tr}(MU^{\dagger} + UM) \right]^2 = -\frac{1}{f^2} 16 L_6 M_0^4 \pi_3^2 + \dots$$

$$\Delta M_{\text{tree}}^2 = -8L_{45} \frac{p^2 M_0^2}{f^2} + 16L_{68} \frac{M_0^4}{f^2} \qquad \qquad L_{45} = 2L_4 + L_5$$
$$L_{68} = 2L_6 + L_8$$

$$\Delta M^2 = \Delta M_{\text{loop}}^2 + \Delta M_{\text{tree}}^2 = \frac{1}{96\pi^2} \left(-4\frac{p^2 M_0^2}{f^2} + \frac{M_0^4}{f^2} \right) \left(\Delta + 1 - \ln M_0^2 \right) \dots \\ \dots - 8L_{45} \frac{p^2 M_0^2}{f^2} + 16L_{68} \frac{M_0^4}{f^2}$$

Step 4: Renormalisation

Introduce renormalised pion fields and GL coefficients and absorb the infinities:

 $\pi_3 = Z_\pi^{1/2} \pi_3^r$ $L_k = L_k^r(\mu) - \frac{\gamma_k}{32\pi^2} \left(\Delta + 1 - \ln \mu^2\right)$ The γ_k are tuned $\gamma_4 = \frac{1}{8} \qquad \gamma_5 = \frac{1}{4} \qquad \gamma_6 = \frac{3}{32} \qquad \gamma_8 = 0$

such that the renormalised 2-pt function $\tau^r(p) = Z_\pi^{-1} \tau(p) \sim rac{i}{p^2 - M_\pi^2}$ is finite

with finite pole mass $M_{\pi}^2 = M_0^2 \left(1 + \frac{M_0^2}{32\pi^2 f^2} \ln \frac{M_0^2}{\mu^2} - \frac{8M_0^2}{f^2} [L_{45}^r(\mu) - 2L_{68}^r(\mu)] \right)$

Exercise: reproduce this result (starting from slide 10)

Final result:

Well-behaved finite result
 But: The necessary counter terms stem from L₄ and not from L₂
 expected from a non-renormalisable theory

- "Non-renormalisability does not mean non-calculability" J. Gasser, hep-ph/0312367 Non-renormalisability manifests in new and increasing number of additional couplings 2 in \mathcal{L}_2 , 10 in \mathcal{L}_4 , ...
- Note: μ dependence in $L^{r}(\mu)$ compensates the μ dependence in the "chiral logarithm"

Note: Loop and \mathcal{L}_4 contribution are suppressed by $\frac{M_0^2}{(4\pi f)^2}$

Example: Pion decay constant to 1-loop

I-loop result for the pion decay constant

$$\langle 0|A_{\mu}(0)|\pi^{a}(\vec{p}) \cong - + - + - - also needed: Z_{\pi}$$

$$A_{\mu} \mathcal{L}_{2,1\pi} + \mathcal{L}_{2,3\pi} + - \mathcal{L}_{4,1\pi}$$

$$also needed: Z_{\pi}$$

$$f_{\pi} = f \left(1 - \frac{M_0^2}{16\pi^2 f^2} \ln \frac{M_0^2}{\mu^2} - \frac{8M_0^2}{f^2} L_{45}^r(\mu) \right)$$

$$f = f_{\pi,m=0}$$
chiral limit value
$$= f \left(1 - \frac{M_0^2}{(4\pi f)^2} \ln \frac{M_0^2}{\Lambda_4^2} \right)$$
Rewriting
$$\Lambda_4 = \Lambda_4(L_4^r, L_5^r)$$

- Finite result
- Loop and \mathcal{L}_4 contribution suppressed by

$$\frac{M_0^2}{(4\pi f)^2}$$

Example: $\pi\pi$ scattering to 1-loop

 \blacktriangleright Threshold value, i.e. for $s=4M_{\pi}^2, t=u=0$ cp. with Lect 2, slide 28

$$T|_{\rm thr} = -\frac{2M_0^2}{f^2} \left(1 - \frac{4}{3} \frac{M_0^2}{(4\pi f)^2} \ln \frac{M_0^2}{\Lambda_1^2} \right) \qquad \qquad \Lambda_1 = \Lambda_1(L_1^r, L_2^r)$$

- Finite result
- Loop and \mathcal{L}_4 contribution suppressed by

$$\frac{M_0^2}{(4\pi f)^2}$$

General observation in 1-loop results

The observations hold in general The I-loop and the L₄ contributions are suppressed by relative to the L₂ tree contributions

- ▶ I-loop and \mathcal{L}_4 contributions: Next-to-leading order (NLO)
- lacksimes The expansion parameters are dimensionless with the chiral scale $\Lambda_\chi=4\pi f\simeq 1{
 m GeV}$
- In SU(3) ChPT we have also have the expansion parameter $\frac{M_{K,LO}^2}{(4\pi f)^2}$ $\frac{M_{\eta,LO}^2}{(4\pi f)^2}$

$$\frac{M_{\pi}^2}{(4\pi f)^2} \simeq 0.02 \qquad \qquad \frac{M_K^2}{(4\pi f)^2} \simeq 0.2 \qquad \qquad \frac{M_{\eta}^2}{(4\pi f)^2} \simeq 0.24$$

very small

reasonably small

 $\frac{p^2}{(4\pi f)^2} = \frac{M_0^2}{(4\pi f)^2}$

The Gasser-Leutwyler coefficients

Example: Getting the GL coefficient L_5

I-loop results for decay constants in SU(3) ChPT:

$$f_{\pi} = f\left(1 - 2\mu_{\pi} - \mu_{K} + \frac{4M_{\pi}^{2}}{f^{2}}L_{5}^{r}(\mu) + \frac{8M_{k}^{2} + 4M_{\pi}^{2}}{f^{2}}L_{4}^{r}(\mu)\right)$$

$$f_{K} = f\left(1 - \frac{3}{4}\mu_{\pi} - \frac{3}{2}\mu_{K} - \frac{3}{4}\mu_{\eta} + \frac{4M_{K}^{2}}{f^{2}}L_{5}^{r}(\mu) + \frac{8M_{k}^{2} + 4M_{\pi}^{2}}{f^{2}}L_{4}^{r}(\mu)\right)$$

$$f_{\eta} = f\left(1 - 3\mu_{K} + \frac{4M_{\eta}^{2}}{f^{2}}L_{5}^{r}(\mu) + \frac{8M_{k}^{2} + 4M_{\pi}^{2}}{f^{2}}L_{4}^{r}(\mu)\right)$$

 $\mu_P \equiv \frac{M_P^2}{32\pi^2 f^2} \ln \frac{M_P^2}{\mu^2}$

•
$$\frac{f_K}{f_\pi} = \left(1 + \frac{5}{2}\mu_\pi - \frac{1}{2}\mu_K - \frac{3}{4}\mu_\eta + \frac{4(M_K^2 - M_\pi^2)}{f^2}L_5^r(\mu)\right)$$

$$\frac{f_K}{f_\pi}\Big|_{\exp} = 1.22 \pm 0.01 \quad \Rightarrow \quad \begin{array}{c} L_5^r(M_\rho) = (1.4 \pm 0.5) \cdot 10^{-3} \\ L_5^r(M_\eta) = (2.2 \pm 0.5) \cdot 10^{-3} \end{array} \quad \Rightarrow \quad \begin{array}{c} \frac{f_\eta}{f_\pi} = 1.3 \pm 0.05 \\ \frac{f_\eta}{f_\pi} = 1.3 \pm 0.05 \end{array}$$

Comment: SU(3) ChPT has more observables than SU(2) ChPT to extract the LECs

The GL coefficients

List of SU(3) GL coefficie	ents fo	r <i>μ=Μ</i> _ℓ :	
J. Bijnens, G. Ecker and J. Gasser, hep-ph/9411232			
Other scale:			
	$\Gamma_{l_{a}}$	115	

$$L_{k}^{r}(\mu_{1}) = L_{k}^{r}(\mu_{2}) + \frac{\Gamma_{k}}{16\pi^{2}} \ln \frac{\mu_{2}}{\mu_{1}}$$

i	$L_i^r(M_\rho) \times 10^3$	source	Γ_i
1	0.4 ± 0.3	$K_{e4}, \pi\pi \to \pi\pi$	3/32
2	1.35 ± 0.3	$K_{e4}, \pi\pi \to \pi\pi$	3/16
3	-3.5 ± 1.1	$K_{e4}, \pi\pi \to \pi\pi$	0
4	-0.3 ± 0.5	Zweig rule	1/8
5	1.4 ± 0.5	$F_K:F_{\pi}$	3/8
6	-0.2 ± 0.3	Zweig rule	11/144
7	-0.4 ± 0.2	Gell-Mann–Okubo, L_5, L_8	0
8	0.9 ± 0.3	$M_{K^0} - M_{K^+}, L_5,$	5/48
		$(2m_s - m_u - m_d) : (m_d - m_u)$	
9	6.9 ± 0.7	$\langle r^2 \rangle_V^{\pi}$	1/4
10	-5.5 ± 0.7	$\pi \to e \nu \gamma$	-1/4

Extraction from observables is not trivial (e.g. remove emagn. effects \rightarrow later)

- Some determinations require theoretical input (Zweig rule)
- More recent determinations
 - from phenomenology: J. Bijnens, I. Jemos, arXiv: 1103.5945[hep-ph] Ο
 - from lattice simulations: Ο S.Aoki et. al. (FLAG review 2019), arXiv:1902.08191

Example: Results for L_5

Systematics of the chiral expansion

We have seen:

ChPT is an expansion in (small) external momenta and quark masses
 the chiral lagrangian contains infinitely many terms

 $\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$

• I-loop contributions with vertices of \mathcal{L}_2 contribute like tree-level terms of \mathcal{L}_4

How does this generalise to higher loops?

$$\mathcal{A} \propto p^{2N+2} F(p)$$
 $N = L + \sum_{d} \left(\frac{d-2}{2}\right) V_d$

Note: $N \ge 0$

- Relation between the momentum (D = 2N+2) and loop (L) expansion
- The larger $N \ge 0$ the smaller the contribution of this diagram Recall: The dimless expansion parameter is $p^2/(4\pi f)^2$
- For a given N only a finite number of N = 0 ⇒ L = 0 & d = 2
 O loops (L ≤ N) N = 1 ⇒ L = 1 & d = 2
 O vertices V_d (d ≤ 2N+2) L = 0 & d = 4, V₄ = 1
 contribute N = 2 ⇒ L = 2 & d = 2
 L = 1 & d = 4, V₄ = 1
 L = 0 & d = 4, V₄ = 1
 L = 1 & d = 4, V₄ = 1
 L = 0 & d = 6, V₆ = 1
 Only a finite number of LECs enter for a given N once these are known ChPT can make predictions

Example: I-loop $\pi\pi$ scattering

)
$$p^4 \int d^4 l \frac{1}{(l^2 - M_\pi^2)((l+2p)^2 - M_\pi^2)} \sim \ln \frac{\Lambda}{M_\pi}$$

$$p^{2} \int d^{4}l \frac{l^{2}}{(l^{2} - M_{\pi}^{2})((l+2p)^{2} - M_{\pi}^{2})} \sim \Lambda^{2}$$
$$\int d^{4}l \frac{l^{2}(l+2p)^{2}}{(l^{2} - M_{\pi}^{2})((l+2p)^{2})} \sim \Lambda^{4}$$

$$\int d^4l \frac{l^2(l+2p)^2}{(l^2 - M_\pi^2)((l+2p)^2 - M_\pi^2)} \sim \Lambda^4$$

finite function

and $A_0(M_\pi^2)$

- In DimReg all 3 integrals lead to $B_0(4p^2, M_\pi^2) = \frac{1}{16\pi^2} \left(\frac{2}{\epsilon} \ln M_\pi^2 + F(4p^2, M_\pi^2)\right)$
- The log divergence $\propto p^4 \cdot \frac{2}{\epsilon}$ is absorbed by

(1

(2)

(3)

$$\sum \quad \propto p^4 \cdot L \qquad \qquad L \quad \longrightarrow \quad L^{re} - \left(\frac{2}{\epsilon} + \dots\right)$$

$$\mathcal{A} \propto p^{2N+2} F(p)$$
 $N = L + \sum_{d} \left(\frac{d-2}{2}\right) V_d$

ChPT is an expansion in powers of external momenta and quark masses At a given chiral dimension D = 2N+2 only a finite number of

$O \text{loops} \ (L \leq N)$		tree	I-loop	2-loop
• and vertices of \mathcal{L}_d with $d \leq 2N+2$	LO	\mathcal{L}_2		
contribute.	NLO	\mathcal{L}_4	\mathcal{L}_2	
	NNLO	\mathcal{L}_6	\mathcal{L}_4	\mathcal{L}_2

- At a given chiral dimension D = 2N+2 only a finite number of LECs contribute
 - These are sufficient to renormalise the theory and render the theory finite The chiral lagrangian by construction contains all terms compatible with the symmetries
 - Only a finite number of renormalised LECs need to be determined (pheno, lattice) for ChPT to make predictions.

Comment on NNLO

At NNLO we need \mathcal{L}_6 and 2-loop integrals

 The number of terms in the chiral Lagrangian increases rapidly *L*₆ for SU(3) ChPT: 90 + 4 terms
 for SU(2) ChPT: 52 + 4 terms
 probably impossible in practice to determine all the LECs in *L*₆

- But: Not all LECs contribute to all observables
 - much less need to be determined for a subset of observables like masses and decay constants
- For a review of NNLO results and calculations see

ChPT beyond 1-loop, J. Bijnens, Prog.Part.Nucl.Phys. 58 (2007) 521-586 hep-ph/0604043

Some loose ends

- Physical external fields
- Electromagnetic isospin breaking
- Anomalies and the Wess-Zumino-Witten term
- Transformation law of the pion fields

Physical vector and axial vector fields

So far: Axial vector current as an *"interpolating field"* for the pions

 $0 \neq \langle 0 | A^a_\mu(0) | \pi^b(\vec{p}) = \delta^{ab} i p_\mu f$ recall Goldstone theorem

QCD WIs relate axial and vector currents it is necessary to set up the generating functional with these two currents

 \blacktriangleright obtain QCD correlation functions followed by setting v = a = 0

- However: Electromagnetic and weak interactions can be accomodated in ChPT by setting the external fields to their "physical values"
 - This allows to discuss pions interacting with photons and W-bosons

Example: Electromagnetism

 $Q = \begin{pmatrix} \frac{2}{3} & & \\ & -\frac{1}{3} & \\ & & -\frac{1}{2} \end{pmatrix} = T^3 + \frac{1}{\sqrt{3}}T^8$ Quark charge matrix $\Rightarrow \qquad v_{\mu}^{3}(x) + \frac{1}{\sqrt{3}}v_{\mu}^{8}(x) \quad \rightarrow \quad -eA_{\mu}(x)$ $\mathcal{L}_{\text{ext}} = v^a_\mu \, \overline{q} \gamma^\mu T^a q \quad \rightarrow \quad -eA_\mu \, \overline{q} \gamma^\mu Q q$ $= -eA_{\mu} \left(\frac{2}{3} \overline{u} \gamma^{\mu} u - \frac{1}{3} \overline{d} \gamma^{\mu} d - \frac{1}{3} \overline{s} \gamma^{\mu} s \right)$ $=A_{\mu}j_{\rm em}^{\mu}$

Example for application: Compton scattering: $\pi^+(p) + \gamma(q) \rightarrow \pi^+(p') + \gamma(q')$

Comment for SU(2) ChPT: We need to add a singlett contribution because

$$Q = \begin{pmatrix} \frac{2}{3} & \\ & -\frac{1}{3} \end{pmatrix} \notin SU(2)$$

Example: weak interactions

Weak currents couple to the left-handed quark currents only

$$r_{\mu} = 0 \qquad l_{\mu} = -\frac{g}{\sqrt{2}} \left(W_{\mu}^{+} T^{+} + h.c. \right) \qquad T^{+} = \left(\begin{array}{ccc} 0 & V_{ud} & V_{us} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$\mathcal{L}_{\text{ext}} = \overline{q}_L l_\mu \gamma^\mu q_L \quad \rightarrow \quad -\frac{g}{\sqrt{2}} \left(V_{ud} \overline{u}_L \gamma^\mu d_L + V_{us} \overline{u}_L \gamma^\mu s_L + h.c. \right)$$

Example for application: semi-leptonic decay $\pi^- \rightarrow \pi^0 e^- \overline{\nu}_e$

Comment: Including the neutral weak current due to Z^0 is more complicated ...

$$\mathcal{L}^{0}_{\text{QCD+QED}} = \overline{q} (i \gamma^{\mu} D_{\mu}) q = \overline{q} (i \gamma^{\mu} D_{\mu}^{\text{color}} - e A_{\mu} \gamma^{\mu} Q) q$$

$$= \mathcal{L}_{\text{QCD}}^{0} - \left(\overline{q}_{R}Q_{R}\gamma^{\mu}q_{R} + \overline{q}_{L}Q_{L}\gamma^{\mu}q_{L}\right)A_{\mu} \qquad Q_{R} = Q_{L} = eQ$$

The quark charge matrix breaks flavor (isospin) symmetry

Promote Q_R and Q_L to spurion fields with transformation behaviour

Construct the chiral Lagrangian with the additional spurion fields Q_R , Q_L

• $\mathrm{tr}[Q_R U Q_L U^\dagger]$ one invariant without derivatives

$$\blacktriangleright \qquad \mathcal{L}_2 = \frac{f^2}{4} \operatorname{tr}[\nabla_{\mu} U \nabla^{\mu} U^{\dagger}] + e^2 C \operatorname{tr}[Q U Q U^{\dagger}]$$

- C: LEC not determined by chiral symmetry
- Recall: The photon field is contained in the covariant derivative
- Power counting: $Q \sim p \Rightarrow \mathscr{D}_2$ is the LO Lagrangian
- Additional terms at NLO: $O(p^2Q^2, m_qQ^2, Q^4)$ In total 17 additional terms to the Gasser-Leutwyler Lagrangian \mathscr{L}_4 with 17 additional LECs K_i

R. Urech, hep-ph/9405341

- provide the neccessary counter terms for 1-loop diagrams.
- hard to determine all from phenomenology

The $O(Q^2)$ term contributes to the charged pion and kaon masses

$$e^{2}C\mathrm{tr}[QUQU^{\dagger}] = -\frac{2e^{2}C}{f^{2}}\left(\pi^{+}\pi^{-} + K^{+}K^{-}\right) + \mathcal{O}(\pi^{4})$$

$$\begin{split} \Delta M^2_{\pi^{\pm}} &= \frac{2e^2C}{f^2} \\ \Delta M^2_{K^{\pm}} &= \Delta M^2_{\pi^{\pm}} \end{split} \qquad \begin{array}{l} \text{Exercise:} \\ \text{Derive these results} \end{array} \end{split}$$

$$\Delta M_{\pi^{0}}^{2} = \Delta M_{K^{0}}^{2} = \Delta M_{\overline{K}^{0}}^{2} = \Delta M_{\eta}^{2} = 0$$

- Electromagnetic shift is the same for π^{\pm} and K^{\pm} "Dashen's theorem" (1969)
- Violations of Dashen's theorem from loop diagrams of $O(m_q Q^2)$

$$\left(M_{\pi^{\pm}}^2 - M_{\pi^0}^2\right)_{\text{exp}} = \left(M_{\pi^{\pm}}^2 - M_{\pi^0}^2\right)_{\text{QCD}} + \left(M_{\pi^{\pm}}^2 - M_{\pi^0}^2\right)_{\text{em}}$$

$$\begin{pmatrix} M_{\pi^{\pm}} - M_{\pi^{0}} \end{pmatrix}_{\text{QCD}} = 0.17 \pm 0.03 \,\text{MeV} \qquad \text{strong isospin breaking} \\ \sim (\text{m}_{\text{u}} - \text{m}_{\text{d}})^{2} \\ \Rightarrow \qquad \begin{pmatrix} M_{\pi^{\pm}} - M_{\pi^{0}} \end{pmatrix}_{\text{em}} = 4.43 \pm 0.03 \,\text{MeV} \qquad \text{Gasser, Leutwyler, 1985}$$

Isospin breaking in the pion masses is almost entirely due to emagn effects !

Use Dashen's theorem to estimate the emagn contribution in the kaon masses:

$$\left(K_{\pi^{\pm}} - M_{K^0} \right)_{\text{em}} \approx \left(M_{\pi^{\pm}} - M_{\pi^0} \right)_{\text{em}} \frac{M_{\pi}}{M_K} \approx 1.25 \,\text{MeV}$$
$$\left(K_{\pi^{\pm}} - M_{K^0} \right)_{\text{exp}} \approx -3.934 \,\text{MeV}$$

References

Most of what was covered here can be found in:

- Jürg Gasser: Light-quark dynamics, hep-ph/0312367
 I-loop pion mass
- Heinrich Leutwyler: Principles of chiral perturbation Theory, hep-ph/9406283
 Anomalies, Transformation of pion fields
- Maarten Golterman: Applications of chiral perturbation theory to lattice QCD, arXiv:0912.4042 [hep-lat]
 Systematics of chiral expansion
- Jürg Gasser and Heinrich Leutwylwer: Chiral Perturbation Theory: Expansions in the mass of the strange quark, Nucl. Phys. B250 465
 - \blacksquare Determination L_5

For possible exercises see

- 🔵 slide 🛛
- slide 35
- see Lect 2, slide 22:

Convince yourself that the chiral condensate in massless QCD (ChPT) does not receive pion loop corrections