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Machine learning applications for LGT

Some applications of machine learning to the study of Lattice Gauge Theories and
related models that have emerged recently

e To the detection of bulk phenomena such as phase transitions and critical points, e.g.:
e Scientific Reports 7,1 (2017), 8823
e Nucl. Phys. B 944 (2019) 114639 arXiv:1812.06726
e arXiv:1903.03506

e To the analysis of correlation functions, including in reconstructing parton
distribution functions, e.g.:

e Phys.Rev.D100 (2019) 014504, arXiv:1807.05971
e Phys.Rev. D102 (2020) 9,094508, arXiv:2007.13800
e arXiv:2010.03996

e To the generation of field configurations, e.g.:
e Phys. Rev. Lett. 125 (2020) arXiv:2003.06413
e arXiv:2007.07115
e arXiv:2008.05456
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Lattice Field Theories

LGT typically require computing integrals such as the following,
1 1 [ &
_ —-S(¢) — — . —S(¢)
)= [ dordén..dspO(o)e 1 [[a0w).

o (:the fields, with D degrees of freedom

e ((¢): a physical observable of which we want the expectation value

® S(¢):the action of the theory, a scalar function of ¢

e Z:the partition function, Z = / Hdgbze_SW)



Lattice Field Theories

LGT typically require computing integrals such as the following,
1 1 [ &
_ —-S(¢) — — . —S(¢)
)= [ dordén..dspO(o)e 1 [[a0w).

o (:the fields, with D degrees of freedom

e ((¢): a physical observable of which we want the expectation value

® S(¢):the action of the theory, a scalar function of ¢

e Z:the partition function, Z = / Hdgbze_SW)

Equivalently:

-/ f[dqbip(cb)o

G_S(¢)

p(¢) = —

can be interpreted as a probability



Markov chain Monte Carlo

Markov chain Monte Carlo: Generate a chain starting from an arbitrary field:
R S G S A
Call T(¢*, ¢’) the transition probability ¢pF —¢’

{d} will converge to p() [e.g. to p(p)=e5@)/Z] if:
o Ergodicity is satisfied, i.e. T*(¢, ¢’) >0 for any ¢, ¢’ for a finite n

D
e Balance is satisfied, i.e. /Hd@p(@T(@ ¢') = p(¢")
1=1



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
~( |k /
. (17 p(¢k)§(¢/)>
p(¢*)p(¢’)

3. Otherwise: pf+l=@pk



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
(1 ﬁ(qﬁ’“)p(qﬁ’))
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

e Satisfies ergodicity and balance

e Allows drawing from an arbitrary distribution p(¢’), e.g. normal or uniform

S(¢")—S(¢")]

e Requires calculating: p(¢')/p(¢%) = e~ .i.e. Z cancels



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
%waww
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

e Satisfies ergodicity and balance

e Allows drawing from an arbitrary distribution p(¢’), e.g. normal or uniform

S(¢")—S(¢")]

e Requires calculating: p(¢')/p(¢%) = e~ .i.e. Z cancels

e Since the configurations ¢ are distributed according to the desired p(¢):
1=
(©) = 37 206

- . 1
and statistical errors scale like ——

VM



Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:
- Ratio of accepted trials over total number of configurations
- Usually can be tuneable
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Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:

- Ratio of accepted trials over total number of configurations
- Usually can be tuneable

e Autocorrelation p(t):

- Probability of having 7 rejections in a row, with p(0) =1
- Autocorrelation time is loosely the value of 7 for which p(7) =0

1 o
- More formally: 7in = 5 + Zp(T)

T=1
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Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:
- Ratio of accepted trials over total number of configurations
- Usually can be tuneable

e Autocorrelation p(t):

- Probability of having 7 rejections in a row, with p(0) =1
- Autocorrelation time is loosely the value of 7 for which p(7) =0

1 o
- More formally: 7in = 5 + ZP(T)

T=1

e Critical slowing down:

- The divergence of Tint as some parameters of the theory approach their

critical value, e.g. as we approach a phase transition
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Example: U(1) pure-gauge with HMC

2-dimensional U(1) gauge-theory
® Critical slowingdown as 8 — oo
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“Freezing” of topological charge:

Q= % %:argP(y)
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Example: U(1) pure-gauge with HMC

2-dimensional U(1) gauge-theory
® Critical slowingdown as 8 — oo
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Example: U(1) pure-gauge with HMC

2-dimensionaﬁ" -
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Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
(1 ﬁ(qﬁ’“)p(qﬁ’))
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

Flow-based generative models for Markov chain Monte Carlo

e Use neural networks to provide proposals ¢’

e Train neural network to yield 5(¢’) as close to p(¢’) as possible
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Flow-based generative model

Prerequisite: reminder on transforming distributions
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Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the
probability distribution of Y is:
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Flow-based generative model

Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the
probability distribution of Y is:

p(y) = F(A1 (1)) |jyh—1<y>|

Trivial example, fx) = 1 (uniform) and y = h(X) = -In(X)
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Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the

probability distribution of Y is:

p(y) = F(A1 (1)) ‘%h-1<y>|

Trivial example, f{x) = 1 (uniform) and y = h(X) = -In(X)
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Flow-based generative model

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:
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Flow-based generative model

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:

det —*

p(¥) = f(hy (7))

E.g. the well-known Box-Muller transformation for transforming two uniformly
distributed random variables u to two normally distributed random variables z

L ug o 2\ 5, o [ V—2Inugcos(2mu)
‘= ( Uy ) ° T ( 2 ) = ha(8) = ( vV —2Inugsin(27uy)
4 )
dh'(2)| o 1 =
p(?) = |det — = e 2
de 71;([) \/ 27
\ Y
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Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢)
A

d

det 12 1(0)| ~

() = r(£(0)) det
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Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢>
A

d

det ckbf(¢>| ~

p(¢) =r(f(9))

e Requirements:
- f(¢p) must be invertible
- Derivative must exist and Jacobean must be cheap to compute
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Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢>
A

d

det d_¢f(¢>‘ =~

p(¢) =r(f(9))

e Requirements:
- f(¢p) must be invertible
- Derivative must exist and Jacobean must be cheap to compute

e Real non-volume preserving flow:

L caq — Qba
9(9) = { 2y = ¢p @ e5(Pa) 1 t(¢y,)

-z, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- sand t are neural networks that have inputs and outputs half the number of
elements in ¢ and z
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Flow-based generative model

e Real non-volume preserving flow:

Za— Qg
9(9) = { 2 = dp @ e5(Pa) 1 ¢(y,)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)
- sand t are neural networks that have inputs and outputs half the number of

elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and t
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Flow-based generative model

e Real non-volume preserving flow:

o Za = QPa
9(9) = { 2 = dp @ e5(Pa) 1 ¢(y,)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- s and t are neural networks that have inputs and outputs half the number of
elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and ¢
dg() —ding)a doitle 1 ek s(ba);
det do = |det dg(®)a dgéib)b = |det 0 es@aa) - H ¢
doy doy 1€a
- Determinant is easy to compute
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Flow-based generative model

e Real non-volume preserving flow:

Za = Pq
9(9) = { 25 = ¢p © (%) 1+ 1(gy)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- s and t are neural networks that have inputs and outputs half the number of
elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and t

dg(¢) d%(¢)a dgl(¢)b 1 dg(¢)b s(da);
det d¢ ‘ — det ( dgd(j%)a d.zliz#ﬁl)b = det O eg@aa) p— H€ ( )
b b 1€a
- Determinant is easy to compute

- |t's also easy to chain these functions:

f(@) = 91(g2(---9n(9)--)) = [ (2) = g ' (92 (g7 (2))--)
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Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

Za:¢a

9(9) = { 2p = dp @ e5(%a) + 1(g,)
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Flow-based generative model
e Real NVP flow for Markov chain Monte Carlo:
9(0) = { Z - z:@ e*(%a) + 1(¢)

- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)
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Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

o Za = QPa
96)={ 220 o+t
- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)

- With ¢=f1(z), train the neural networks s;and t;in each g; so that:

d e_S(¢)

det %f(@ =
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Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

Za = Pq
9(9) = { 25 = ¢p © (%) 1+ 1(gy)

- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)

- With ¢=f1(z), train the neural networks s;and t;in each g; so that:

d e_S(¢>

det d_gbf(gb)‘ =

- After training ¢p=f1(z) can be used to generate an arbitrary number of new fields.
These should be approximately distributed according to the action.

- To ensure the right distribution, start from one and accept the next one according
to Metropolis accept/reject algorithm.
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Flow-based generative model

How does one train (i.e. which function is to be minimised)?

The loss function needs to reflect how close the output of the model is to the desired
distribution

Shifted Kullback-Leibler (KL) divergence:

0= qubgp #) (108 5(¢) — log p(¢) — log Z)

L) == 3 (log () + S(6))

M <
71=1

Minimum of loss function is bounded by —log Z

53



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

6= g5 (97" ()
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e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)
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37
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e Trivial exercise: transform uniform to normal distribution
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Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

/
oy = uy = (up —[Eiwa)) © e (21

39



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, )

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

4.0 — f(2)=g;1(g'(2) _
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Training iterations

- Loss function stagnates after some number of iterations
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Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

— 1(2)=g5'(g;' (@)
—— f(z) = g} (g3 (g5 (g1 ()
—— f(z) = gg(g51 (g, (g5 (gr (g1t @) A
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- Increasing number of affine layers allows for a smaller loss function



¢4 model

Application to ¢p* model as in arXiv:1904.12072

2-dimensional scalar field theory with the action:

L L

S(¢) = Z Z Gij(A0i; — bic1,j — bit1,j — Gij—1 — bije1) + M ; + Ay

i=1 j=1

Five choices of the parameters considered:

El E2 E3 E4 ES
L 6 8 10 12 14
m? -4 -4 -4 -4 -4
A 6.975 6.008 5.550 5.276 5.113

The parameters are chosen such that m,L is constant

= as L — oo, m, — 0, a critical point.
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Example: &4 model

Example of critical slowing down

0 100 200 300 400 500 600
MC iterations
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Observable is the two-point susceptibility

=) Ge()

Where G, is the two-point correlation function:

X2 = LQZ

oy + z))

— (o())(o(y + 2))
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Example: &4 model

Example of critical slowing down

1.0t ' 9l o<£,2'2 . |
f\ sl
\“‘“\\‘ 7t Re
0.8} 1t 6l ®
L di o’
0.6F \\ \ 4t
= Z 3l
04} gl ¢
2 L
0.2r o
0.0F
0 10 20 30 40 50 60 1 6 8 10 12 14

Observable autocorrelation time:

s T (0 = (0) (O —

(0))

polr) = L3 (0; - (0))?

49



Flow-based generative model

e Application to ¢* model:
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Flow-bﬁsedgenetatmebmndej
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- Each ensemble on 1 Marconi100 node (4 V100 GPUs)
- Increasing complexity of neural networks and coupling layers from E1 to E5

- Training cost: ~0.5-1 second per iteration
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Flow-based generative model

e Observable values towards criticality

é
Sr : 0.10}
¢
4t | 0.09
|dR|
ol . 0.08}
0.07}
2r C
0.06
.
6 8 10 12 14

0.11—

12

14

52



Flow-based generative model

e Autocorrelation times
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