High Performance Computing and Aspects of Computing in Lattice Gauge Theories

//

Giannis Koutsou Computation-Based Science and Technology Research Centre (CaSToRC) The Cyprus Institute //

EuroPLEx School Lecture 5 – 20th November 2020

Machine learning applications for LGT

Some applications of machine learning to the study of Lattice Gauge Theories and related models that have emerged recently

- To the detection of *bulk phenomena* such as *phase transitions* and *critical points*, e.g.:
 - Scientific Reports 7, 1 (2017), 8823
 - Nucl. Phys. B 944 (2019) 114639 arXiv:1812.06726
 - arXiv:1903.03506
- To the analysis of correlation functions, including in reconstructing parton distribution functions, e.g.:
 - Phys. Rev. D100 (2019) 014504, arXiv:1807.05971
 - Phys. Rev. D102 (2020) 9, 094508, arXiv:2007.13800
 - arXiv:2010.03996
- To the *generation* of field configurations, e.g.:
 - Phys. Rev. Lett. 125 (2020) arXiv:2003.06413
 - arXiv:2007.07115
 - arXiv:2008.05456

Machine learning applications for LGT

Some applications of machine learning to the study of Lattice Gauge Theories and related models that have emerged recently

- To the detection of *bulk phenomena* such as *phase transitions* and *critical points*, e.g.:
 - Scientific Reports 7, 1 (2017), 8823
 - Nucl. Phys. B 944 (2019) 114639 arXiv:1812.06726
 - arXiv:1903.03506
- To the analysis of correlation functions, including in reconstructing parton distribution functions, e.g.:
 - Phys. Rev. D100 (2019) 014504, arXiv:1807.05971
 - Phys. Rev. D102 (2020) 9, 094508, arXiv:2007.13800
 - arXiv:2010.03996
- To the *generation* of field configurations, e.g.:
 - Phys. Rev. Lett. 125 (2020) arXiv:2003.06413
 - arXiv:2007.07115
 - arXiv:2008.05456

Lattice Field Theories

LGT typically require computing integrals such as the following,

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int d\phi_1 d\phi_2 \dots d\phi_D \mathcal{O}(\phi) e^{-S(\phi)} = \frac{1}{Z} \int \prod_{i=1}^D d\phi_i \mathcal{O}(\phi) e^{-S(\phi)}$$

- ϕ : the *fields*, with *D* degrees of freedom
- $\mathcal{O}(\phi)$: a physical observable of which we want the expectation value
- $S(\phi)$: the action of the theory, a scalar function of ϕ Z: the partition function, $Z = \int \prod_{i=1}^{D} d\phi_i e^{-S(\phi)}$

Lattice Field Theories

LGT typically require computing integrals such as the following,

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int d\phi_1 d\phi_2 \dots d\phi_D \mathcal{O}(\phi) e^{-S(\phi)} = \frac{1}{Z} \int \prod_{i=1}^D d\phi_i \mathcal{O}(\phi) e^{-S(\phi)}$$

- ϕ : the *fields*, with *D* degrees of freedom
- $\mathcal{O}(\phi)$: a physical observable of which we want the expectation value
- $S(\phi)$: the *action* of the theory, a scalar function of ϕ

• Z: the partition function,
$$Z = \int \prod_{i=1}^{D} d\phi_i e^{-S(\phi)}$$

Equivalently:

$$\langle \mathcal{O} \rangle = \int \prod_{i=1}^{D} d\phi_i p(\phi) \mathcal{O}(\phi)$$

 $p(\phi) = \frac{e^{-S(\phi)}}{Z}$ can be interpreted as a probability

Markov chain Monte Carlo: Generate a chain starting from an arbitrary field:

$$\phi^0 \rightarrow \phi^1 \rightarrow \ldots \rightarrow \phi^k \rightarrow \ldots \rightarrow \phi^M$$

Call $T(\phi^k, \phi')$ the transition probability $\phi^k \rightarrow \phi'$

{ ϕ } will converge to $p(\phi)$ [e.g. to $p(\phi)=e^{-S(\phi)}/Z$] if:

- Ergodicity is satisfied, i.e. Tⁿ(φ, φ') > 0 for any φ, φ' for a finite n
 Balance is satisfied, i.e. ∫ ∏^D_{i=1} dφ_ip(φ)T(φ, φ') = p(φ')

Metropolis sampling

- 1. Draw an update proposal ϕ' from a distribution $\tilde{p}(\phi')$
- 2. Accept ϕ' as the next configuration in the Markov chain (ϕ^{k+1}) with probability:

$$\min\left(1,\frac{\tilde{p}(\phi^k)p(\phi')}{p(\phi^k)\tilde{p}(\phi')}\right)$$

3. Otherwise: $\phi^{k+1} = \phi^k$

Metropolis sampling

- 1. Draw an update proposal ϕ' from a distribution $\tilde{p}(\phi')$
- 2. Accept ϕ' as the next configuration in the Markov chain (ϕ^{k+1}) with probability:

$$\min\left(1, \frac{\tilde{p}(\phi^k)p(\phi')}{p(\phi^k)\tilde{p}(\phi')}\right)$$

- 3. Otherwise: $\phi^{k+1} = \phi^k$
- Satisfies ergodicity and balance
- Allows drawing from an arbitrary distribution $\tilde{p}(\phi')$, e.g. normal or uniform
- Requires calculating: $p(\phi')/p(\phi^k) = e^{-[S(\phi')-S(\phi^k)]}$, i.e. Z cancels

Metropolis sampling

- 1. Draw an update proposal ϕ' from a distribution $\tilde{p}(\phi')$
- 2. Accept ϕ' as the next configuration in the Markov chain (ϕ^{k+1}) with probability:

$$\min\left(1, \frac{\tilde{p}(\phi^k)p(\phi')}{p(\phi^k)\tilde{p}(\phi')}\right)$$

- 3. Otherwise: $\phi^{k+1} = \phi^k$
- Satisfies ergodicity and balance
- Allows drawing from an arbitrary distribution $\tilde{p}(\phi')$, e.g. normal or uniform
- Requires calculating: $p(\phi')/p(\phi^k) = e^{-[S(\phi')-S(\phi^k)]}$, i.e. Z cancels
- Since the configurations ϕ are distributed according to the desired $p(\phi)$:

$$\langle \mathcal{O} \rangle = \frac{1}{M} \sum_{i=1}^{M} \mathcal{O}(\phi^i)$$

and statistical errors scale like $\frac{1}{\sqrt{M}}$

Metropolis sampling in Markov chain Monte Carlo

- Acceptance rate:
 - Ratio of accepted trials over total number of configurations
 - Usually can be tuneable

Metropolis sampling in Markov chain Monte Carlo

- Acceptance rate:
 - Ratio of accepted trials over total number of configurations
 - Usually can be tuneable
- Autocorrelation $\rho(\tau)$:
 - Probability of having τ rejections in a row, with $\rho(0) = 1$
 - Autocorrelation time is loosely the value of τ for which $\rho(\tau) = 0$

- More formally:
$$\tau_{int} = \frac{1}{2} + \sum_{\tau=1}^{\infty} \rho(\tau)$$

Metropolis sampling in Markov chain Monte Carlo

- Acceptance rate:
 - Ratio of accepted trials over total number of configurations
 - Usually can be tuneable
- Autocorrelation $\rho(\tau)$:
 - Probability of having τ rejections in a row, with $\rho(0) = 1$
 - Autocorrelation time is loosely the value of τ for which $\rho(\tau) = 0$
 - More formally: $\tau_{int} = \frac{1}{2} + \sum_{i=1}^{\infty} \rho(\tau)$
- Critical slowing down:
 - The divergence of τ_{int} as some parameters of the theory approach their critical value, e.g. as we approach a phase transition

Example: U(1) pure-gauge with HMC

2-dimensional U(1) gauge-theory

 \bullet Critical slowing down as $\beta \to \infty$

"Freezing" of topological charge:

$$Q = \frac{1}{2\pi} \sum_{y} \arg P(y)$$

Example: U(1) pure-gauge with HMC

Example: U(1) pure-gauge with HMC

Metropolis sampling

- 1. Draw an update proposal ϕ' from a distribution $\tilde{p}(\phi')$
- 2. Accept ϕ' as the next configuration in the Markov chain (ϕ^{k+1}) with probability:

$$\min\left(1,\frac{\tilde{p}(\phi^k)p(\phi')}{p(\phi^k)\tilde{p}(\phi')}\right)$$

3. Otherwise: $\phi^{k+1} = \phi^k$

Flow-based generative models for Markov chain Monte Carlo

- Use neural networks to provide proposals ϕ'
- Train neural network to yield $\tilde{p}(\phi')$ as close to $p(\phi')$ as possible

Prerequisite: reminder on transforming distributions

Prerequisite: reminder on transforming distributions

If X is a random variable with probability density function f(x), then for Y=h(X), the probability distribution of Y is:

$$p(y) = f(h^{-1}(y)) \left| \frac{d}{dy} h^{-1}(y) \right|$$

Prerequisite: reminder on transforming distributions

If X is a random variable with probability density function f(x), then for Y=h(X), the probability distribution of Y is:

$$p(y) = f(h^{-1}(y)) \left| \frac{d}{dy} h^{-1}(y) \right|$$

Trivial example, f(x) = 1 (uniform) and $y = h(X) = -\ln(X)$

Prerequisite: reminder on transforming distributions

If X is a random variable with probability density function f(x), then for Y=h(X), the probability distribution of Y is:

$$p(y) = f(h^{-1}(y)) \left| \frac{d}{dy} h^{-1}(y) \right|$$

Trivial example, f(x) = 1 (uniform) and $y = h(X) = -\ln(X)$

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:

$$p(\vec{y}) = f(h_a^{-1}(\vec{y})) \left| \det \frac{dh_i^{-1}(\vec{y})}{dy_j} \right|$$

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:

$$p(\vec{y}) = f(h_a^{-1}(\vec{y})) \left| \det \frac{dh_i^{-1}(\vec{y})}{dy_j} \right|$$

E.g. the well-known Box-Muller transformation for transforming two uniformly distributed random variables u to two normally distributed random variables z

$$\vec{u} = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix} \qquad \qquad \vec{z} = \begin{pmatrix} z_0 \\ z_1 \end{pmatrix} = h_a(\vec{u}) = \begin{pmatrix} \sqrt{-2\ln u_0}\cos(2\pi u_1) \\ \sqrt{-2\ln u_0}\sin(2\pi u_1) \end{pmatrix}$$

$$p(\vec{z}) = \left| \det \frac{dh_i^{-1}(\vec{z})}{dz_j} \right| = \prod_{i=0}^1 \frac{1}{\sqrt{2\pi}} e^{-\frac{z_i^2}{2}}$$

The idea: given a set of random variables *z* drawn from a distribution r(z) which we know how to sample from, find a transformation $\phi = f^{-1}(z)$ such that:

$$\tilde{p}(\phi) = r(f(\phi)) \left| \det \frac{d}{d\phi} f(\phi) \right| \simeq \frac{e^{-S(\phi)}}{Z}$$

The idea: given a set of random variables *z* drawn from a distribution r(z) which we know how to sample from, find a transformation $\phi = f^{-1}(z)$ such that:

$$\tilde{p}(\phi) = r(f(\phi)) \left| \det \frac{d}{d\phi} f(\phi) \right| \simeq \frac{e^{-S(\phi)}}{Z}$$

- Requirements:
 - $f(\phi)$ must be invertible
 - Derivative must exist and Jacobean must be cheap to compute

The idea: given a set of random variables *z* drawn from a distribution r(z) which we know how to sample from, find a transformation $\phi = f^{-1}(z)$ such that:

$$\tilde{p}(\phi) = r(f(\phi)) \left| \det \frac{d}{d\phi} f(\phi) \right| \simeq \frac{e^{-S(\phi)}}{Z}$$

- Requirements:
 - $f(\phi)$ must be invertible
 - Derivative must exist and Jacobean must be cheap to compute
- *Real non-volume preserving flow:*

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- z_a , z_b and ϕ_a , ϕ_b are half-vectors of z and ϕ (e.g. even and odd elements)
- s and t are neural networks that have inputs and outputs half the number of elements in ϕ and z

• *Real non-volume preserving flow:*

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- z_a , z_b and ϕ_a , ϕ_b are half-vectors of z and ϕ (e.g. even and odd elements)
- s and t are neural networks that have inputs and outputs half the number of elements in ϕ and z

$$g^{-1}(z) = \begin{cases} \phi_a = z_a \\ \phi_b = (z_b - t(z_a)) \odot e^{-s(z_a)} \end{cases}$$

 Note that these functions are invertible without requiring inverting the neural networks s and t

• *Real non-volume preserving flow:*

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- z_a , z_b and ϕ_a , ϕ_b are half-vectors of z and ϕ (e.g. even and odd elements)
- s and t are neural networks that have inputs and outputs half the number of elements in ϕ and z

$$g^{-1}(z) = \begin{cases} \phi_a = z_a \\ \phi_b = (z_b - t(z_a)) \odot e^{-s(z_a)} \end{cases}$$

 Note that these functions are invertible without requiring inverting the neural networks s and t

$$\left|\det\frac{dg(\phi)}{d\phi}\right| = \left|\det\left(\begin{array}{cc}\frac{dg(\phi)_a}{d\phi_a} & \frac{dg(\phi)_b}{d\phi_a}\\\frac{dg(\phi)_a}{d\phi_b} & \frac{dg(\phi)_b}{d\phi_b}\end{array}\right)\right| = \left|\det\left(\begin{array}{cc}1 & \frac{dg(\phi)_b}{d\phi_a}\\0 & e^{s(\phi_a)}\end{array}\right)\right| = \prod_{i\in a}e^{s(\phi_a)_i}$$

- Determinant is easy to compute

• *Real non-volume preserving flow:*

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- z_a , z_b and ϕ_a , ϕ_b are half-vectors of z and ϕ (e.g. even and odd elements)
- s and t are neural networks that have inputs and outputs half the number of elements in ϕ and z

$$g^{-1}(z) = \begin{cases} \phi_a = z_a \\ \phi_b = (z_b - t(z_a)) \odot e^{-s(z_a)} \end{cases}$$

 Note that these functions are invertible without requiring inverting the neural networks s and t

$$\det \frac{dg(\phi)}{d\phi} \bigg| = \left| \det \left(\begin{array}{c} \frac{dg(\phi)_a}{d\phi_a} & \frac{dg(\phi)_b}{d\phi_a} \\ \frac{dg(\phi)_a}{d\phi_b} & \frac{dg(\phi)_b}{d\phi_b} \end{array} \right) \right| = \left| \det \left(\begin{array}{c} 1 & \frac{dg(\phi)_b}{d\phi_a} \\ 0 & e^{s(\phi_a)} \end{array} \right) \right| = \prod_{i \in a} e^{s(\phi_a)_i}$$

- Determinant is easy to compute
- It's also easy to chain these functions:

$$f(\phi) = g_1(g_2(\dots g_n(\phi))) \Rightarrow f^{-1}(z) = g_n^{-1}(\dots g_2^{-1}(g_1^{-1}(z))) \dots$$

• Real NVP flow for Markov chain Monte Carlo:

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

• Real NVP flow for Markov chain Monte Carlo:

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- Define a function to transform random variables z from a known distribution r(z):

$$f^{-1}(z) = g_n^{-1}(\dots g_2^{-1}(g_1^{-1}(z))\dots)$$

• Real NVP flow for Markov chain Monte Carlo:

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- Define a function to transform random variables z from a known distribution r(z):

$$f^{-1}(z) = g_n^{-1}(\dots g_2^{-1}(g_1^{-1}(z))\dots)$$

- With $\phi = f^1(z)$, train the neural networks s_i and t_i in each g_i so that:

$$\tilde{p}(\phi) = r(f(\phi)) \left| \det \frac{d}{d\phi} f(\phi) \right| \simeq \frac{e^{-S(\phi)}}{Z}$$

• Real NVP flow for Markov chain Monte Carlo:

$$g(\phi) = \begin{cases} z_a = \phi_a \\ z_b = \phi_b \odot e^{s(\phi_a)} + t(\phi_a) \end{cases}$$

- Define a function to transform random variables z from a known distribution r(z):

$$f^{-1}(z) = g_n^{-1}(\dots g_2^{-1}(g_1^{-1}(z))\dots)$$

- With $\phi = f^1(z)$, train the neural networks s_i and t_i in each g_i so that:

$$\tilde{p}(\phi) = r(f(\phi)) \left| \det \frac{d}{d\phi} f(\phi) \right| \simeq \frac{e^{-S(\phi)}}{Z}$$

- After training $\phi = f^1(z)$ can be used to generate an arbitrary number of new fields. These should be *approximately* distributed according to the action.
- To ensure the right distribution, start from one and accept the next one according to Metropolis accept/reject algorithm.

- How does one train (i.e. which function is to be minimised)?
- The *loss function* needs to reflect how close the output of the model is to the desired distribution
- Shifted Kullback-Leibler (KL) divergence:

$$L(\tilde{p}) = \int \prod_{j} d\phi_{j} \tilde{p}(\phi) (\log \tilde{p}(\phi) - \log p(\phi) - \log Z)$$
$$\hat{L}(\tilde{p}) = \frac{1}{M} \sum_{j=1}^{M} (\log \tilde{p}(\phi) + S(\phi))$$

- Minimum of loss function is bounded by $-\log Z$

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

$$\phi = g_2^{-1}(g_1^{-1}(u))$$

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

$$\phi = g_2^{-1}(g_1^{-1}(u))$$

$$g_2^{-1}$$

$$g_1^{-1}$$

$$\phi \left\{ \begin{array}{cc} \phi_a \\ \phi_b \end{array} \begin{array}{c} u'_a \\ u'_b \end{array} \right\} u' \qquad u' \left\{ \begin{array}{c} u'_a \\ u'_b \end{array} \begin{array}{c} u_a \\ u'_b \end{array} \right\} u$$

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, s and t have two hidden layers with 64 nodes each

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, s and t have two hidden layers with 64 nodes each

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Trivial exercise: transform uniform to normal distribution
- Two affine layers (g_1, g_2)
- In each affine layer, s and t have two hidden layers with 64 nodes each

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Loss function stagnates after some number of iterations

- Transform uniform to normal distribution
 - Two affine layers (g_1, g_2)
 - In each affine layer, *s* and *t* have two hidden layers with 64 nodes each

- Increasing number of affine layers allows for a smaller loss function

$\varphi^4 \operatorname{model}$

Application to φ^4 model as in arXiv:1904.12072

2-dimensional scalar field theory with the action:

$$S(\phi) = \sum_{i=1}^{L} \sum_{j=1}^{L} \phi_{i,j} (4\phi_{i,j} - \phi_{i-1,j} - \phi_{i+1,j} - \phi_{i,j-1} - \phi_{i,j+1}) + m^2 \phi_{i,j}^2 + \lambda \phi_{i,j}^4$$

Five choices of the parameters considered:

	E1	E2	E3	E4	E5
L	6	8	10	12	14
m^2	-4	-4	-4	-4	-4
λ	6.975	6.008	5.550	5.276	5.113

The parameters are chosen such that m_pL is constant

 \Rightarrow as $L \rightarrow \infty$, $m_p \rightarrow 0$, a critical point.

Example: φ^4 model

Example of critical slowing down

Observable is the two-point susceptibility

$$\chi_2 = \sum_x G_c(x)$$

Where *G_c* is the two-point correlation function:

$$\chi_2 = \frac{1}{L^2} \sum_{y} \langle \phi(y)\phi(y+x) \rangle - \langle \phi(y) \rangle \langle \phi(y+x) \rangle$$

Example: φ^4 model

Example of critical slowing down

Observable autocorrelation time:

$$\rho_{\mathcal{O}}(\tau) = \frac{\frac{1}{M-\tau} \sum_{i=1}^{M-\tau} (\mathcal{O}_i - \langle \mathcal{O} \rangle) (\mathcal{O}_{i+\tau} - \langle \mathcal{O} \rangle)}{\frac{1}{M} \sum_{i=1}^{M} (\mathcal{O}_i - \langle \mathcal{O} \rangle)^2}$$

• Application to ϕ^4 model:

- Each ensemble on 1 Marconi100 node (4 V100 GPUs)
- Increasing complexity of neural networks and coupling layers from E1 to E5

- Each ensemble on 1 Marconi100 node (4 V100 GPUs)
- Increasing complexity of neural networks and coupling layers from E1 to E5
- Training cost: ~0.5-1 second per iteration

• Observable values towards criticality

• Autocorrelation times

Acknowledgements

Computer time used to produce some of the data shown

Marconi 100, CINECA PRACE Tier-0 project

SuperMUC-NG, LRZ Gauss Large Scale project

Cyclone, Cyl Local project

Funding

Project "NextQCD", Cyprus Research and Innovation Foundation