High Performance Computing and Aspects of
Computing in Lattice Gauge Theories

//
Giannis Koutsou
Computation-Based Science and Technology Research Centre (CaSToRC)
The Cyprus Institute

//

Tae CyPRrRuS FuroPLEx School
INSTITUTE Lecture 5 - 20th November 2020

RRRRRRRR *TECHNOLOGY*INNOVATION



Machine learning applications for LGT

Some applications of machine learning to the study of Lattice Gauge Theories and
related models that have emerged recently

e To the detection of bulk phenomena such as phase transitions and critical points, e.g.:
e Scientific Reports 7,1 (2017), 8823
e Nucl. Phys. B 944 (2019) 114639 arXiv:1812.06726
e arXiv:1903.03506

e To the analysis of correlation functions, including in reconstructing parton
distribution functions, e.g.:

e Phys.Rev.D100 (2019) 014504, arXiv:1807.05971
e Phys.Rev. D102 (2020) 9,094508, arXiv:2007.13800
e arXiv:2010.03996

e To the generation of field configurations, e.g.:
e Phys. Rev. Lett. 125 (2020) arXiv:2003.06413
e arXiv:2007.07115
e arXiv:2008.05456



Machine learning applications for LGT

Some applications of machine learning to the study of Lattice Gauge Theories and
related models that have emerged recently

e To the detection of bulk phenomena such as phase transitions and critical points, e.g.:
e Scientific Reports 7,1 (2017), 8823
e Nucl. Phys. B 944 (2019) 114639 arXiv:1812.06726
e arXiv:1903.03506

e To the analysis of correlation functions, including in reconstructing parton
distribution functions, e.g.:

e Phys.Rev. D100 (2019) 014504, arXiv:1807.05971
e Phys.Rev. D102 (2020) 9,094508, arXiv:2007.13800
e arXiv:2010.03996

. e Tothe generation of field configurations, e.g.: %

e Phys. Rev. Lett. 125 (2020) arXiv:2003.06413 I
e arXiv:2007.07115 ]i
e arXiv:2008.05456 |

_ e R - _ _ __ _ — __I

e e ————— e e —— == — — = = . S _




Lattice Field Theories

LGT typically require computing integrals such as the following,
1 1 [ &
_ —-S(¢) — — . —S(¢)
)= [ dordén..dspO(o)e 1 [[a0w).

o (:the fields, with D degrees of freedom

e ((¢): a physical observable of which we want the expectation value

® S(¢):the action of the theory, a scalar function of ¢

e Z:the partition function, Z = / Hdgbze_SW)



Lattice Field Theories

LGT typically require computing integrals such as the following,
1 1 [ &
_ —-S(¢) — — . —S(¢)
)= [ dordén..dspO(o)e 1 [[a0w).

o (:the fields, with D degrees of freedom

e ((¢): a physical observable of which we want the expectation value

® S(¢):the action of the theory, a scalar function of ¢

e Z:the partition function, Z = / Hdgbze_SW)

Equivalently:

-/ f[dqbip(cb)o

G_S(¢)

p(¢) = —

can be interpreted as a probability



Markov chain Monte Carlo

Markov chain Monte Carlo: Generate a chain starting from an arbitrary field:
R S G S A
Call T(¢*, ¢’) the transition probability ¢pF —¢’

{d} will converge to p() [e.g. to p(p)=e5@)/Z] if:
o Ergodicity is satisfied, i.e. T*(¢, ¢’) >0 for any ¢, ¢’ for a finite n

D
e Balance is satisfied, i.e. /Hd@p(@T(@ ¢') = p(¢")
1=1



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
~( |k /
. (17 p(¢k)§(¢/)>
p(¢*)p(¢’)

3. Otherwise: pf+l=@pk



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
(1 ﬁ(qﬁ’“)p(qﬁ’))
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

e Satisfies ergodicity and balance

e Allows drawing from an arbitrary distribution p(¢’), e.g. normal or uniform

S(¢")—S(¢")]

e Requires calculating: p(¢')/p(¢%) = e~ .i.e. Z cancels



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
%waww
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

e Satisfies ergodicity and balance

e Allows drawing from an arbitrary distribution p(¢’), e.g. normal or uniform

S(¢")—S(¢")]

e Requires calculating: p(¢')/p(¢%) = e~ .i.e. Z cancels

e Since the configurations ¢ are distributed according to the desired p(¢):
1=
(©) = 37 206

- . 1
and statistical errors scale like ——

VM



Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:
- Ratio of accepted trials over total number of configurations
- Usually can be tuneable

10



Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:

- Ratio of accepted trials over total number of configurations
- Usually can be tuneable

e Autocorrelation p(t):

- Probability of having 7 rejections in a row, with p(0) =1
- Autocorrelation time is loosely the value of 7 for which p(7) =0

1 o
- More formally: 7in = 5 + Zp(T)

T=1

11



Markov chain Monte Carlo

Metropolis sampling in Markov chain Monte Carlo

e Acceptance rate:
- Ratio of accepted trials over total number of configurations
- Usually can be tuneable

e Autocorrelation p(t):

- Probability of having 7 rejections in a row, with p(0) =1
- Autocorrelation time is loosely the value of 7 for which p(7) =0

1 o
- More formally: 7in = 5 + ZP(T)

T=1

e Critical slowing down:

- The divergence of Tint as some parameters of the theory approach their

critical value, e.g. as we approach a phase transition

12



Example: U(1) pure-gauge with HMC

2-dimensional U(1) gauge-theory
® Critical slowingdown as 8 — oo

251

O~

001

-2.5¢
2.5F

001

-2.5¢
2.5¢

- 0.0f
-2.5¢

1 1 I 1 1
T T T ll T ]
C 1 1 1 1 1 T
T T T T T
1 ”1‘ 1 1 1 1
T T T T T T
1 ||1 1 1 ‘ 1| ‘1

(el

©

(el

N

(el

S
<t
nm 0
[l
-5
S
o™
n 0
[l
-5
0
0

1

N

el

-10

10+

L
O_

(e}
_10_

et

0 20000 40000 60000 _ 80000 _ 100000
HMC iterations

“Freezing” of topological charge:

Q= % %:argP(y)

13



Example: U(1) pure-gauge with HMC

2-dimensional U(1) gauge-theory
® Critical slowingdown as 8 — oo

251
D~
i 0.0f
S8
-2.5¢

T T T T ]
C 1 1 1 1 1 i T
T T T T T T
Ln
i 0.0f .
(en N
1 1 I 1 1

T T T ll T ]
C 1 1 1 1 1 T

T T T T T

1 ”1‘ 1 1 1 1

T T T T T T

1 ||1 1 1 ‘ 1| ‘1

T T T T T T

1 ‘

2.5
©
0.0
o

i
I 0
<o ¥

20000 60000 _ 80000 100000

HMC iterations

0 20000

(0))

M—
e i A = (OO —
po(T) = 1 5
M Zi:1(0i — <O>)
——————— . . .
1\1 —_—
éo-

L -
= : : : : :
go_! -
= : : : : —

)l
L o
= : : : : =
i
Ll -
L
g
-
éo-
0 1000 2000 3000 4000 5000
T

14



Example: U(1) pure-gauge with HMC

2-dimensionaﬁ" -

251

D~
i 0.0f
S8

_2.5 L1
2.5F

©
i 0.0f
o

i
I oF
<o ¥

® Critical sloy Critical slowing down: integrated autocorrelation )2
time (7int) diverges as critical point approached
T ] T —
°
o

o i

o S—

o —

o

. 1

1 2 3 4 5 6 7 |

B B s

T T W, :

1 1 1 1 1 1 | m- O 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 0 1000 2000 3000 4000 5000

HMC iterations T

15



Markov chain Monte Carlo

Metropolis sampling

1. Draw an update proposal ¢’ from a distribution 5(¢’)
2. Accept ¢’ as the next configuration in the Markov chain (¢*+1) with probability:
(1 ﬁ(qﬁ’“)p(qﬁ’))
" p(¢")p(¢')

3. Otherwise: pf+l=@pk

Flow-based generative models for Markov chain Monte Carlo

e Use neural networks to provide proposals ¢’

e Train neural network to yield 5(¢’) as close to p(¢’) as possible

16



Flow-based generative model

Prerequisite: reminder on transforming distributions

17



Flow-based generative model

Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the
probability distribution of Y is:

18



Flow-based generative model

Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the
probability distribution of Y is:

p(y) = F(A1 (1)) |jyh—1<y>|

Trivial example, fx) = 1 (uniform) and y = h(X) = -In(X)

19



Flow-based generative model

Prerequisite: reminder on transforming distributions

If X'is arandom variable with probability density function f(x), then for Y=h(X), the

probability distribution of Y is:

p(y) = F(A1 (1)) ‘%h-1<y>|

Trivial example, f{x) = 1 (uniform) and y = h(X) = -In(X)

1.0

0.8}

0.6

0.4r

0.2}

0.0

1.0R

0.8}

0.6

0.4r

0.2

0.0

|H ||||||I||.
2 3

y = -In(x)

4

-_- Y i

20



Flow-based generative model

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:

21



Flow-based generative model

Prerequisite: reminder on transforming distributions

Generalizes to vectors of random variables:

det —*

p(¥) = f(hy (7))

E.g. the well-known Box-Muller transformation for transforming two uniformly
distributed random variables u to two normally distributed random variables z

L ug o 2\ 5, o [ V—2Inugcos(2mu)
‘= ( Uy ) ° T ( 2 ) = ha(8) = ( vV —2Inugsin(27uy)
4 )
dh'(2)| o 1 =
p(?) = |det — = e 2
de 71;([) \/ 27
\ Y

22



Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢)
A

d

det 12 1(0)| ~

() = r(£(0)) det

23



Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢>
A

d

det ckbf(¢>| ~

p(¢) =r(f(9))

e Requirements:
- f(¢p) must be invertible
- Derivative must exist and Jacobean must be cheap to compute

24



Flow-based generative model

The idea: given a set of random variables z drawn from a distribution 7(z) which we
know how to sample from, find a transformation ¢ = f -1(z) such that:

e_S(¢>
A

d

det d_¢f(¢>‘ =~

p(¢) =r(f(9))

e Requirements:
- f(¢p) must be invertible
- Derivative must exist and Jacobean must be cheap to compute

e Real non-volume preserving flow:

L caq — Qba
9(9) = { 2y = ¢p @ e5(Pa) 1 t(¢y,)

-z, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- sand t are neural networks that have inputs and outputs half the number of
elements in ¢ and z

25



Flow-based generative model

e Real non-volume preserving flow:

Za— Qg
9(9) = { 2 = dp @ e5(Pa) 1 ¢(y,)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)
- sand t are neural networks that have inputs and outputs half the number of

elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and t

26



Flow-based generative model

e Real non-volume preserving flow:

o Za = QPa
9(9) = { 2 = dp @ e5(Pa) 1 ¢(y,)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- s and t are neural networks that have inputs and outputs half the number of
elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and ¢
dg() —ding)a doitle 1 ek s(ba);
det do = |det dg(®)a dgéib)b = |det 0 es@aa) - H ¢
doy doy 1€a
- Determinant is easy to compute

27



Flow-based generative model

e Real non-volume preserving flow:

Za = Pq
9(9) = { 25 = ¢p © (%) 1+ 1(gy)

- 24, zp and ¢, Oy are half-vectors of z and ¢ (e.g. even and odd elements)

- s and t are neural networks that have inputs and outputs half the number of
elementsin ¢ and z

— L ¢a — Za
g (=) = { b = (2 — t(22)) ©@ e770%e)

- Note that these functions are invertible without requiring inverting the neural
networks s and t

dg(¢) d%(¢)a dgl(¢)b 1 dg(¢)b s(da);
det d¢ ‘ — det ( dgd(j%)a d.zliz#ﬁl)b = det O eg@aa) p— H€ ( )
b b 1€a
- Determinant is easy to compute

- |t's also easy to chain these functions:

f(@) = 91(g2(---9n(9)--)) = [ (2) = g ' (92 (g7 (2))--)

28



Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

Za:¢a

9(9) = { 2p = dp @ e5(%a) + 1(g,)

29



Flow-based generative model
e Real NVP flow for Markov chain Monte Carlo:
9(0) = { Z - z:@ e*(%a) + 1(¢)

- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)

30



Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

o Za = QPa
96)={ 220 o+t
- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)

- With ¢=f1(z), train the neural networks s;and t;in each g; so that:

d e_S(¢)

det %f(@ =

31



Flow-based generative model

e Real NVP flow for Markov chain Monte Carlo:

Za = Pq
9(9) = { 25 = ¢p © (%) 1+ 1(gy)

- Define a function to transform random variables z from a known distribution r(z):

f7H(2) =g, (92 (91 (2))--.)

- With ¢=f1(z), train the neural networks s;and t;in each g; so that:

d e_S(¢>

det d_gbf(gb)‘ =

- After training ¢p=f1(z) can be used to generate an arbitrary number of new fields.
These should be approximately distributed according to the action.

- To ensure the right distribution, start from one and accept the next one according
to Metropolis accept/reject algorithm.

32



Flow-based generative model

How does one train (i.e. which function is to be minimised)?

The loss function needs to reflect how close the output of the model is to the desired
distribution

Shifted Kullback-Leibler (KL) divergence:

0= qubgp #) (108 5(¢) — log p(¢) — log Z)

L) == 3 (log () + S(6))

M <
71=1

Minimum of loss function is bounded by —log Z

53



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

34



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

6= g5 (97" ()

35



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

36



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

37



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

38



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

/
oy = uy = (up —[Eiwa)) © e (21

39



Flow-based generative model

e Trivial exercise: transform uniform to normal distribution

- Two affine layers (g1, )

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

40



Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

0.8t — Levn |
0.7+ mm [=2.99
0.6
0.5
0.4r

0.3

0.2}

0.1}

0.0 4 = 0 2 4
¢



Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

0.8t — Levn |
0.7+ =199
0.6
0.5
0.4r

0.3

0.2}

0.1t

00— 2 0 2 4
¢



Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

0.8r S R
van

0.7r e 1-094 -

0.6
0.5r
0.4r
0.3r
0.2

0.1

0.0




Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

0.8r S R
van

0.7r B 1-049 -

0.6
0.5r
0.4r
0.3r
0.2

0.1

0.0




Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

4.0 — f(2)=g;1(g'(2) _
3.5}
3.0
2.5F

<\
2.0r
1.5¢

1.0

0.5

BUT 1000 2000 3000 4000 5000

Training iterations

- Loss function stagnates after some number of iterations

45



Flow-based generative model

e Transform uniform to normal distribution

- Two affine layers (g1, ¢2)

- Ineach affine layer, s and t have two hidden layers with 64 nodes each

— 1(2)=g5'(g;' (@)
—— f(z) = g} (g3 (g5 (g1 ()
—— f(z) = gg(g51 (g, (g5 (gr (g1t @) A

4.0

3.5

3.0

T

2.5

=
2.0

1.5

1.0

0.5

WS 1000 2000 3000 4000 5000
Training iterations

- Increasing number of affine layers allows for a smaller loss function



¢4 model

Application to ¢p* model as in arXiv:1904.12072

2-dimensional scalar field theory with the action:

L L

S(¢) = Z Z Gij(A0i; — bic1,j — bit1,j — Gij—1 — bije1) + M ; + Ay

i=1 j=1

Five choices of the parameters considered:

El E2 E3 E4 ES
L 6 8 10 12 14
m? -4 -4 -4 -4 -4
A 6.975 6.008 5.550 5.276 5.113

The parameters are chosen such that m,L is constant

= as L — oo, m, — 0, a critical point.

47



Example: &4 model

Example of critical slowing down

0 100 200 300 400 500 600
MC iterations

8

© E1L,L-6

B

T4, L-12 E3, L-10

E5,L=14

Observable is the two-point susceptibility

=) Ge()

Where G, is the two-point correlation function:

X2 = LQZ

oy + z))

— (o())(o(y + 2))

48



Example: &4 model

Example of critical slowing down

1.0t ' 9l o<£,2'2 . |
f\ sl
\“‘“\\‘ 7t Re
0.8} 1t 6l ®
L di o’
0.6F \\ \ 4t
= Z 3l
04} gl ¢
2 L
0.2r o
0.0F
0 10 20 30 40 50 60 1 6 8 10 12 14

Observable autocorrelation time:

s T (0 = (0) (O —

(0))

polr) = L3 (0; - (0))?

49



Flow-based generative model

e Application to ¢* model:

-10 L |
I

1

-30

_50 L

_60 L

=70

El

E2 |

E3

E4 |

E5

Training iteration Training iteration

- Each ensemble on 1 Marconi100 node (4 V100 GPUs)
- Increasing complexity of neural networks and coupling layers from E1 to E5

] 1 1 1 1 1 Y ] ] 1 1 1 1
0 20000 40000 60000 80000 100000 120000 0'00 20000 40000 60000 80000 100000 120000

50



Flow-bﬁsedgenetatmebmndej

o Applicati | |
900}
n
g
-10
h_ £ 800 |
-20 ;
S .
= 700 u
-30 (qe)
§ 0
0 2600t = m
5
=50+ E
= 500}
_60_
_70 1 1 1 1 1 1
0 20000 El =9 E3 E4 E5
Ensemble

.

El

E2 |

E3

E4 |

E5

_

- Each ensemble on 1 Marconi100 node (4 V100 GPUs)
- Increasing complexity of neural networks and coupling layers from E1 to E5

- Training cost: ~0.5-1 second per iteration

iteration

00 80000 100000 120000

51



Flow-based generative model

e Observable values towards criticality

é
Sr : 0.10}
¢
4t | 0.09
|dR|
ol . 0.08}
0.07}
2r C
0.06
.
6 8 10 12 14

0.11—

12

14

52



Flow-based generative model

e Autocorrelation times

; ® Metropolis E ; I. Metropolis
- Flow (] g E Flow
: o - :
29 . i ®
~ 25 B o - - 13 L
=21r 1 B11} .
g 17¢ . E 9t
= 13+ ) 7+
9r Sr e
S 3L
1 1 1 1 1 1
6 8 10 12 14 6 10 12 14

53



Acknowledgements

Computer time used to produce some of the data shown

Marconi100, CINECA SuperMUC-NG, LRZ Cyclone, Cyl
PRACE Tier-0 project Gauss Large Scale project Local project
Funding
RESEARCH
& INNOVATION
FOUNDATION
A

Project “NextQCD” Cyprus
Research and Innovation Foundation



