
High Performance Computing and aspects of
Computing in Lattice Gauge Theories

\\

Giannis Koutsou
Computation-based Science and Technology Research Centre (CaSToRC)

The Cyprus Institute

\\

EuroPLEx School, 29  October 2020th



Lecture 1: Introduction to HPC
29th October

Introduction to high performance computing (HPC) and parallel computing

Scalability and other performance metrics

Modern HPC architectures and their characteristics

Supercomputing ecosystem

European landscape

Exa-scale initiatives

Considerations when optimizing scientific codes

Simple performance models

Outline of select (on-node) optimization strategies
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Computers are becoming all the more parallel due to technological constraints
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High performance computing
High performance computing means parallel computing

Computers are becoming all the more parallel due to technological constraints

https://github.com/karlrupp/microprocessor-trend-data

Moore’s law: transistor count exponentially increasing (but not as originally expected)

Dennard Scaling: . Lost around 2006 ( : power, : area, : freq., : voltage)P ∝ AfV 2 P A f V
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 Architectures | Algorithms | Performance metrics

High performance computing
High performance computing means parallel computing

Exploiting parallelism is essential for scientific computing

Practitioners of computational sciences benefit from knowledge of concepts and
challenges of parallel computing

Architectures and their characteristics

Algorithms and how amenable they are to parallelisation

Performance metrics and their significance, e.g. sustained and peak floating point
performance, bandwidth, scalability
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High performance computing
How do we "spend" parallelism?

Capacity computing

Improve time-to-solution of a problem that can also run on less number of
processes

E.g. solve many small problems

Capability computing

Solve a problem that was impossible to solve on less processes

E.g. solve a problem using  nodes, that cannot fit in memory of less nodesN
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High performance computing
How do we "spend" parallelism?

Capacity computing

Improve time-to-solution of a problem that can also run on less number of
processes

E.g. solve many small problems

Capability computing

Solve a problem that was impossible to solve on less processes

E.g. solve a problem using  nodes, that cannot fit in memory of less nodes

High Throughput Computing sometimes used to identify capacity computing, with HPC used to
mean capability computing

N
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High performance computing
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Weak scaling: Increase processing units; keep the local problem size fixed  for
increasing global problem size

Strong scaling: Increase processing units; keep the global problem size fixed  for
decreasing local problem size

⇒

⇒
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High performance computing
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Quantify scalability: Speed-up ( ) when using  processes

: Reference time-to-solution

: Time-to-solution when using  processes

S N

S(N) =
T0

T(N)

T0
T(N) N
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High performance computing
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Quantify scalability: Speed-up ( ) when using  processes

: Reference time-to-solution

: Time-to-solution when using  processes

Quantify divergence of scalability from ideal: parallel efficiency

Ideal scaling: 

Typically (e.g. in proposals for computer time) an application is considered "scalable"
in the region of  for which 

S N

S(N) =
T0

T(N)

T0
T(N) N

ϵ(N) = S(N)
N0

N

ϵ(N) ∼ 1

N ϵ(Ν)≥ 0.5
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Time-to-solution as a function of :

Speed-up as a function of 

High performance computing
Concepts of parallel computing

Amdahl's Law: A simple model for the expected scalability of an arbitrary application

: fraction of application that can be parallelized

: time-to-solution of code when using one process

: Number of processes

f

T0
N

N

T(N) = (1− f) + fT0
T0
N

N

S(N) = =
T0
T(N)

1

1− f+ f
N
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High performance computing
Concepts of parallel computing

Performance metrics

Floating point rate: number of floating point operations carried out by a
computational task per unit time

I/O or Bandwidth: bytes read and written per unit time
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High performance computing
Concepts of parallel computing

Performance metrics

Floating point rate: number of floating point operations carried out by a
computational task per unit time

I/O or Bandwidth: bytes read and written per unit time

Distinguish between theoretical peak and sustained

Theoretical peak: Assuming full utilization of hardware

Sustained: measured, e.g. via running an application

Note that usually a single floating point operation (flop) is an add, sub, or mul, with other

operations (e.g. dev, exponentiation, etc.) typically requiring more than 1 flop.
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High performance computing
Concepts of parallel computing

Taxonomy of computer architectures, Flynn's Taxonomy:

Single Instruction stream, Single Data stream (SISD)

Multiple Instruction streams, Single Data stream (MISD)

Single Instruction stream, Multiple Data streams (SIMD)

Multiple Instruction streams, Multiple Data streams (MIMD)
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High performance computing
Concepts of parallel computing

Taxonomy of computer architectures, Flynn's Taxonomy:

Single Instruction stream, Single Data stream (SISD)

Multiple Instruction streams, Single Data stream (MISD)

Single Instruction stream, Multiple Data streams (SIMD)

Multiple Instruction streams, Multiple Data streams (MIMD)

Parallel computing

Most computing devices have underlying SIMD architecture units: GPUs, CPUs, etc.

Most supercomputers can be considered MIMD architectures: multiple interconnected
computing devices that can issue the same or different instructions on multiple data
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High performance computing
What's in a supercomputer?

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload
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High performance computing
What's in a supercomputer?

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

Interconnect

Interfaces on nodes

Wiring and switches

Storage

Still predominantly spinning disks

Solid state drives are emerging for smaller scratch space

Tape systems for archiving

Front-end nodes

For user access

Compiling, submitting jobs, etc.
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High performance computing
Computing devices

Most supercomputers have compute nodes equipped with a co-processor, typically a general
purpose GPU

CPU architecture

Optimized for handling a diverse ranged of instructions on multiple data

Large caches per core

Smaller bandwidth to memory but typically larger memory

Reliance on prefetching

Some availability of SIMD floating point units

GPU architecture

Optimized for throughput, i.e. applying the same operation on multiple data

Smaller caches per "core"

Higher bandwidth to memory but typically smaller memory

Reliance on very wide SIMD units
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CPU

Large area devoted to control

Large caches

Few ALUs

GPU

Less area devoted to control

Small caches

Most area dedicated to ALUs

High performance computing
Computing devices

Most supercomputers have compute nodes equipped with a co-processor, typically a general
purpose GPU
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High performance computing
Computing devices

CPU architectures and main characteristics

Intel Xeon and AMD EPYC (x86), various ARM implementations, and IBM Power

 cores per CPU (current max: 64), 2 - 4 CPUs per node

Memory bandwidth of 50-100 GBytes/s

Theoretical peak floating point performance 30-50 Gflop/s per core

GPU architectures and main characteristics

NVIDIA Tesla and AMD Radeon

 "cores" or Arithmetic and Logical Unit (ALUs). 2 - 6 GPUs per node

Memory bandwidth of  GBytes/s

Theoretical peak floating point performance 10-20 Tflop/s per GPU

O(10)

∼

∼

O(1000)

O(1000)

∼
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High performance computing
Computing devices

CPU architectures and main characteristics

Intel Xeon and AMD EPYC (x86), various ARM implementations, and IBM Power

 cores per CPU (current max: 64), 2 - 4 CPUs per node

Memory bandwidth of 50-100 GBytes/s

Theoretical peak floating point performance 30-50 Gflop/s per core

GPU architectures and main characteristics

NVIDIA Tesla and AMD Radeon

 "cores" or Arithmetic and Logical Unit (ALUs). 2 - 6 GPUs per node

Memory bandwidth of  GBytes/s

Theoretical peak floating point performance 10-20 Tflop/s per GPU

Intel Xe "Ponte Vecchio" GPUs announced for 2021

O(10)

∼

∼

O(1000)

O(1000)

∼
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Bi-annual ranking of supercomputers

Classification according to sustained
floating point performance

Run High Performance Linpack (HPL)
on whole system

https://www.top500.org Latest list: June 2020

Top system: Japan, ARM-based system, 415 Pflop/s

Second: US, GPUs (NVIDIA V100), 200 Pflop/s

Top in Europe: IT, sixth overall, GPUs (NVIDIA V100), 35 Pflop/s

6 out of top 10 equipped with GPUs

Worldwide landscape of supercomputers
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Marconi100 - CINECA, IT

IBM Power CPUs, NVIDIA V100 GPUs

30 Pflop/s theoretical peak

Piz Daint - CSCS, CH

Cray XC30, Intel Xeon CPUs, NVIDIA P100 GPUs

27 Pflop/s theoretical peak

Supercomputing landscape
Notable supercomputers in Europe

∼

∼
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SuperMUC - LRZ, DE

IBM ThinkSystem, Intel Xeon CPUs

27 Pflop/s theoretical peak

Juwels - JSC, DE

Bull Sequana, Intel Xeon CPUs, NVIDIA A100 GPUs

70 Pflop/s theoretical peak (with GPU partition, currently
being deployed)

Supercomputing landscape
Notable supercomputers in Europe

∼

∼
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Joliet/Curie - CEA, FR

Bull Sequana, AMD EPYC CPUs

12 Pflop/s theoretical peak

HAWK - HLRS, DE

HPE Apollo, AMD EPYC CPUs

26 Pflop/s theoretical peak

MareNostrum-4 - BSC, ES

Mainly Lenovo, Intel Xeon Platinum plus smaller ARM, IBM
Power9 w/ NVIDIA V100, and AMD partitions

14 Pflop/s theoretical peak

Supercomputing landscape
Notable supercomputers in Europe

∼

∼

∼
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Supercomputer access
In Europe, these systems also made available via a single, centralized allocation process

So-called Tier-0 PRACE access

Technical review: need to show that methods and software are appropriate for the
underlying architecture. Scaling and performance analysis required.

Scientific review: peer-review of the proposed science.

-  core-hours for individual projects

Smaller-scale access available nationally

Depends on national mechanisms for access

Usually follows same approach of technical and scientific review

O(10) O(100)
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Supercomputer access
In Europe, these systems also made available via a single, centralized allocation process

So-called Tier-0 PRACE access

Technical review: need to show that methods and software are appropriate for the
underlying architecture. Scaling and performance analysis required.

Scientific review: peer-review of the proposed science.

-  core-hours for individual projects

Smaller-scale access available nationally

Depends on national mechanisms for access

Usually follows same approach of technical and scientific review

Access to such resources requires good understanding of HPC and the challenges in achieving
efficient software implementations

O(10) O(100)
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Supercomputing landscape
European strategy

Up until 2020

Countries procure systems using own funds

EU supports operations and distribution of computational resources via projects (e.g.
PRACE)

EU supports prototyping for future systems (e.g. DEEP and Mont Blanc)

From 2020: EuroHPC Joint Undertaking

EU co-funds procurement of supercomputers by consortia of European states

Three pre-exascale systems will be deployed by 2021

Two exascale systems by 2022 or 2023

∼
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Supercomputing landscape
EuroHPC Pre-exascale systems, coming on-line 2021

LUMI

Hosted at CSC (FI), partners BE, CZ, DK, EE, IS, NO, PL, SE, CH

HPE, AMD EPYC CPUs and AMD Instinct GPUs

Peak: 552 Pflop/s
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Supercomputing landscape
EuroHPC Pre-exascale systems, coming on-line 2021

LUMI

Hosted at CSC (FI), partners BE, CZ, DK, EE, IS, NO, PL, SE, CH

HPE, AMD EPYC CPUs and AMD Instinct GPUs

Peak: 552 Pflop/s

Leonardo

Hosted at CINECA (IT), partners AT, SK, SI, HU

Bull Sequana, Intel Xeon CPUs and NVIDIA A100 GPUs

Peak: 250 Pflop/s

MareNostrum 5

Hosted at BSC (ES), partners PR, TR, HR

Architecture not announced yet other than "same as MareNostrum 4". Intel GPUs?

Peak: 200 Pflop/s

∼

∼
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Supercomputing landscape
US Exascale roadmap
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Supercomputing landscape
US Exascale roadmap

First exascale system "Aurora" expected 2021 with Intel GPUs
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Supercomputing landscape
US Exascale roadmap

First exascale system "Aurora" expected 2021 with Intel GPUs

Similar mix as in Europe: Expect significant performance from NVIDIA, AMD, and Intel
GPUs

21



Assessing performance
of scientific application kernels



Peak floating point rate

The theoretical, highest number of
floating point operations that can be
carried out by a computational unit

Depends on: clock rate, vector length,
FPUs per core, cores per socket

Peak bandwidth

The theoretical, highest number of
bytes that can be read/written from/to
some level of memory (L1,2,3 cache,
RAM, etc.)

For RAM: data rate, channels, ranks,
banks

Performance of scienti�c codes
Considerations
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Peak floating point rate

The theoretical, highest number of
floating point operations that can be
carried out by a computational unit

Depends on: clock rate, vector length,
FPUs per core, cores per socket

Peak bandwidth

The theoretical, highest number of
bytes that can be read/written from/to
some level of memory (L1,2,3 cache,
RAM, etc.)

For RAM: data rate, channels, ranks,
banks

Good to have these numbers at hand for the machine being used

Performance of scienti�c codes
Considerations
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Performance of scienti�c codes
An Intel Xeon system example (Juwels)

Peak FP ( )

48 cores per node, clock: 2.7 GHz (2 24-core Intel Skylake)

Best case: two 512-bit fused multiply-and-adds per cycle (AVX-512)

In double precision: 2 (8 mul + 8 add) per cycle = 32 flop/cycle

Therefore: 2.7x10  cycles/s  32 flop/cycle = 86.4 Gflop/s per core

4,147.2 Gflop/s per node

Peak BW ( )

2666 MHz six-channel DDR4: 128 GBytes/s per socket

256 GBytes/s (dual socket)

Some (semi-)standard tools

On Linux, you can obtain processor details via cat /proc/cpuinfo.

You can obtain topology and memory info e.g. hwloc, dmidecode (latter requires

access to /dev/mem)

γFP
×

×
9 ×

γIO
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Computational kernels
Sustained performance

Sustained FP-rate: the measured, average number of floating point operations carried
out by the kernel per unit time

add, sub, and mul count as 1 flop

dev, sqrt, sin, etc. count  2 flops. Depends on architecture

Count number of flops in kernel and divide by runtime

Alternatively, or for more complex codes, use performance counters

In our examples we will see cases of kernels where the flops are countable

Sustained BW: the measured, average bytes read/written from main memory per unit
time

As in the case of FP-rate, count bytes needed to be read and bytes needed to be
written to and from RAM and divide by run time

Maximum data reuse assumption: once data is read from RAM, it never needs to be
re-read

≥
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Straight forward implementation:

double Y[L][N][N];
double X[L][N][N];
double A[N][N];

/* ...
 * Initialize X[][][] and A[][]
 * ...  */
for(int i=0; i<L; i++) {
  for(int a=0; a<N; a++) {
    for(int b=0; b<N; b++) {
      Y[i][a][b] = 0;
      for(int c=0; c<N; c++) {
         Y[i][a][b] += A[a][c]*X[i][c][b];
      }
    }
  }
}

Number of fp operations

Number of bytes of I/O

: word-length in bytes, e.g.  for
single precision,  for double, etc.

 if 

In any case, if  small enough, A should

be kept in low-level cache

An example
Consider the following kernel operation:

with: , , 

= ⋅ ,Y abi Aac Xcbi

i = 0, . . . , L − 1 a,b, c = 0, . . . ,N− 1 L≫N

= L ⋅ 2 ⋅NFP N3

=w ⋅ (2 ⋅ L ⋅ + )NIO N2 N2

w w= 4
8

2L →O(L)N2 L≫N

N
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Given some measurement of the

run-time 

FP-rate: 

IO-rate: 

This motivates defining an intensity 

for(int i=0; i<L; i++) {
  for(int a=0; a<N; a++) {          
    for(int b=0; b<N; b++) {
      Y[i][a][b] = 0;
      for(int c=0; c<N; c++) {
           Y[i][a][b] += A[a][c]*X[i][c][b];
      }
    }
  }
}

An example
Data reuse assumption

Y[i][0][0] = A[0][0]*X[i][0][0] + A[0][1]*X[i][1][0] + ... + A[0][N-1]*X[i][N-1][0];
Y[i][0][1] = A[0][0]*X[i][0][1] + A[0][1]*X[i][1][1] + ... + A[0][N-1]*X[i][N-1][0];
...
Y[i][1][0] = A[1][0]*X[i][0][0] + A[1][1]*X[i][1][0] + ... + A[1][N-1]*X[i][N-1][0];
Y[i][1][1] = A[1][0]*X[i][0][1] + A[1][1]*X[i][1][1] + ... + A[1][N-1]*X[i][N-1][1];
...

Elements of X and A are required multiple times. However we only count their loads once.

T̄

=βFP
NFP

T̄

=βIO
NIO

T̄

I =
NFP
NIO
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Similarly to , we can define the machine flop/byte
ratio ( )

E.g. for Juwels compute node: 

Intensities
Computational kernel intensity

Ratio of kernel floating point operations to bytes of I/O

For our previous example:

Note how the problem size  drops out  constant  irrespective of problem size

E.g. for  and double precision,  flops/byte

Machine flop/byte ratio

= = =N/wIk
NFP

NIO

2LN3

2wLN2

L ⇒ Ik
N= 3 = 0.375Ik

Ik
Im

=Im
γFP
γIO

≃ 16.2Im
flop

byte
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Intensities
Balance between kernel / hardware intensities

: Kernel is "compute-bound" on this architecture. Higher  would lead to
higher performance, but higher  would not.

: Kernel is "bandwidth-" or "memory-bound" on this architecture. Higher 
would lead to higher performance, but higher  would not.

: Kernel is balanced on this architecture. Ideal situation.

For the example kernel of the previous slides, on our example hardware

  the kernel is memory-bound

Note the assumptions that enter  and 

 considers all operations can be a sequence of multiply-and-add

 assumes maximum data reuse

 constant if problem size  drops out

≫Ik Im γFP
γIO

≪Ik Im γIO
γFP

≃Ik Im

≪Ik Im ⇒

Ik Im

γFP
βIO
Ik L
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Expectations of performance
Given an architecture with 

Can we know  and  for the kernel we wish to run; can we estimate ?

Compare  and . Do we expect the kernel to be memory or compute bound on this
architecture?

Can we obtain  and ?

For this, we need to measuring the performance on the targeted architecture

What are the ratios  and ?

Im

NFP NIO Ik
Ik Im

βFP βIO

βFP
γFP

βIO
γIO
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Expectations of performance
Given an architecture with 

Can we know  and  for the kernel we wish to run; can we estimate ?

Compare  and . Do we expect the kernel to be memory or compute bound on this
architecture?

Can we obtain  and ?

For this, we need to measuring the performance on the targeted architecture

What are the ratios  and ?

This analysis should guide our overall strategy when developing or optimizing
computational kernels

If the kernel is memory-bound, we should be trying to optimize for memory I/O. Ideally

we try to achieve a .

If the kernel is compute-bound, we should be trying to optimize for a higher FP-rate.

Ideally we try to achieve a .

Im

NFP NIO Ik
Ik Im

βFP βIO

βFP
γFP

βIO
γIO

→ 1
βIO
γIO

→ 1
βFP
γFP
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Strategies
Some node-level considerations for optimization



Strategies
Mutli-threading

For compute-bound kernels, this effectively multiplies 

For memory-bound kernels, allows better saturation of 

γFP
γIO
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Mutli-threading

For compute-bound kernels, this effectively multiplies 

For memory-bound kernels, allows better saturation of 

Vectorization

Enable the use of specialized SIMD hardware

Also benefits efficient I/O

γFP
γIO
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Strategies
Mutli-threading

For compute-bound kernels, this effectively multiplies 

For memory-bound kernels, allows better saturation of 

Vectorization

Enable the use of specialized SIMD hardware

Also benefits efficient I/O

Data layout transformations

Transformations for mitigation of cache misses (improve temporal and spatial cache
locality)  Blocking and tiling

Transformations which can assist vectorization or auto-vectorization

γFP
γIO

→
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for(int i=0; i<L; i++)
  y[i] = a*x[i] + y[i];

Vectorization
Most modern processors have some vectorization capabilities

SSE, AVX, AltiVec, QPX, NEON

Single Instruction Multiple Data -- SIMD

33



for(int i=0; i<L; i++)
  y[i] = a*x[i] + y[i];

for(int i=0; i<L; i+=4) {
  y[i  ] = a*x[i  ] + y[i  ];
  y[i+1] = a*x[i+1] + y[i+1];
  y[i+2] = a*x[i+2] + y[i+2];
  y[i+3] = a*x[i+3] + y[i+3];
}

Vectorization
Most modern processors have some vectorization capabilities

SSE, AVX, AltiVec, QPX, NEON

Single Instruction Multiple Data -- SIMD
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for(int i=0; i<L; i++)
  y[i] = a*x[i] + y[i];

for(int i=0; i<L; i+=4) {
  y[i  ] = a*x[i  ] + y[i  ];
  y[i+1] = a*x[i+1] + y[i+1];
  y[i+2] = a*x[i+2] + y[i+2];
  y[i+3] = a*x[i+3] + y[i+3];
}float4 va = {a,a,a,a};

for(int i=0; i<L; i+=4) {
  float4 vy;
  float4 vx;
  load4(vx, &x[i]);
  load4(vy, &y[i]);
  vy = va*vx + vy;
  store4(&y[i], vy);
}

Note: the above is pseudo-code, namely load4,

float4, etc. are simplifications.

Vectorization
Most modern processors have some vectorization capabilities

SSE, AVX, AltiVec, QPX, NEON

Single Instruction Multiple Data -- SIMD

35



for(int i=0; i<L; i++)
  y[i] = a*x[i] + y[i];

for(int i=0; i<L; i+=4) {
  y[i  ] = a*x[i  ] + y[i  ];
  y[i+1] = a*x[i+1] + y[i+1];
  y[i+2] = a*x[i+2] + y[i+2];
  y[i+3] = a*x[i+3] + y[i+3];
}float4 va = {a,a,a,a};

for(int i=0; i<L; i+=4) {
  float4 vy;
  float4 vx;
  load4(vx, &x[i]);
  load4(vy, &y[i]);
  vy = va*vx + vy;
  store4(&y[i], vy);
}

Note: the above is pseudo-code, namely load4,

float4, etc. are simplifications.

In many case, the compiler will generate
vector instructions (auto-vectorization)

However this usually requires an
appropriate data layout

Vectorization
Most modern processors have some vectorization capabilities

SSE, AVX, AltiVec, QPX, NEON

Single Instruction Multiple Data -- SIMD
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Data layout transformations
Easier vectorization

The data are ordered such that the same operation can be applied to consecutive
elements

Assists the compiler in detecting auto-vectorization opportunities

Assists the programmer in using vector intrinsics
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Data layout transformations
Easier vectorization

The data are ordered such that the same operation can be applied to consecutive
elements

Assists the compiler in detecting auto-vectorization opportunities

Assists the programmer in using vector intrinsics

Better cache locality

The data are ordered in a way as close to the order in which they will be accessed in your
kernels as possible

The data are reordered such that when an element needs to be accessed multiple times,
these multiple accesses are issued very close to each other

Optimizes for temporal and for spatial locality
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for(int i=0; i<M; i++) {
  for(int j=0; j<M; j++) {
    C[i*M + j] = 0; 
    for(int k=0; k<N; k++) {
      C[i*M + j] += A[i*N + k]*B[k*M + j];
    }
  }      
}

Data layout transformations
Example: Matrix-matrix multiplication

Repeated reading of columns of 

If  too large, a whole row of  may not fit into L2 cache

= ⋅Cij ∑
k=0

N−1

Aik Bkj

, ,AM×N BN×M CM×M

B

N A
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Data layout transformations
Example: Matrix-matrix multiplication

Blocking: better cache locality

for(int i=0; i<M; i+=BM)
  for(int j=0; j<M; j+=BM) {
    Cb[:BM][:BM] = 0;
    for(int k=0; k<N; k++) {
      Ab[:BM][:BN] = A[i:i+BM][k:k+BN];
      Bb[:BN][:BM] = B[k:k+BN][j:j+BM];
      for(int ib=0; ib<BM; ib++) 
        for(int jb=0; jb<BM; jb++) 
          for(int kb=0; kb<BN; kb++) 
            Cb[ib][jb] += Ab[ib][kb] * Bb[kb][jb];
      C[i:i+BM][j:j+BM] = Cb[:BM][:BM];
    }
  }
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Data layout transformations
Example: Matrix-matrix multiplication

Transpose tiles of : better alignment for SIMD

for(int i=0; i<M; i+=BM)
  for(int j=0; j<M; j+=BM) {
    Cb[:BM][:BM] = 0;
    for(int k=0; k<N; k++) {
      Ab[:BM][:BN] = A[i:i+BM][k:k+BN];
      Bb[:BM][:BN] = B[k:k+BN][j:j+BM];            \* Transpose B *\
      for(int ib=0; ib<BM; ib++) 
        for(int jb=0; jb<BM; jb++) 
          for(int kb=0; kb<BN; kb++) 
            Cb[ib][jb] += Ab[ib][kb] * Bb[jb][kb]; \* Transpose B *\
      C[i:i+BM][j:j+BM] = Cb[:BM][:BM];
    }
  }

B
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typedef struct {
  float x;
  float y;
  float z;
} coords;

You can now allocate an array of coords:

size_t L = 1000;
coords *arr = malloc(sizeof(coords)*L);

Data layout transformations
AoS: Array of structures

Arrays of structures arise naturally when mapping physical problems to code. E.g. say you
want to define an array of coordinates:
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typedef struct {
  float x;
  float y;
  float z;
} coords;

You can now allocate an array of coords:

size_t L = 1000;
coords *arr = malloc(sizeof(coords)*L);

Now assume you would like to get an array of the distances of the coordinates from the origin:

for(int i=0; i<L; i++)
  r[i] = sqrt(arr[i].x*arr[i].x +
              arr[i].y*arr[i].y +
              arr[i].z*arr[i].z);

You can see how the choice of data layout
makes auto-vectorization difficult. A
common way around this is to use a
Structure of Arrays (SoA) rather than an
Array of Structures.

Data layout transformations
AoS: Array of structures

Arrays of structures arise naturally when mapping physical problems to code. E.g. say you
want to define an array of coordinates:
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typedef struct {
  float *x;
  float *y;
  float *z;
} coords;

And now allocate each element of coords separately:

coords arr;
arr.x = malloc(sizeof(float)*L);
arr.y = malloc(sizeof(float)*L);
arr.z = malloc(sizeof(float)*L);

This layout facilitates vectorization

for(int i=0; i<L; i+=4) {
  r[i  ] = sqrt(arr.x[i  ]*arr.x[i  ]+arr.y[i  ]*arr.y[i  ]+arr.z[i  ]*arr.z[i  ]);
  r[i+1] = sqrt(arr.x[i+1]*arr.x[i+1]+arr.y[i+1]*arr.y[i+1]+arr.z[i+1]*arr.z[i+1]);
  r[i+2] = sqrt(arr.x[i+2]*arr.x[i+2]+arr.y[i+2]*arr.y[i+2]+arr.z[i+2]*arr.z[i+2]);
  r[i+3] = sqrt(arr.x[i+3]*arr.x[i+3]+arr.y[i+3]*arr.y[i+3]+arr.z[i+3]*arr.z[i+3]);
}

Data layout transformations
AoS to SoA

Define a structure of arrays, this is similar to how one programs for GPUs:
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Data layout transformations
Stencil codes

Another application of the data re-ordering is in stencil codes. Consider a 2-D stencils
operation:

for(int y=0; y<L; y++)
for(int x=0; x<L; x++) {
 B[y][x] = 4*A[y][x] - (A[y][x+1] + A[y][x-1] + A[y+1][x] + A[y-1][x]);
}

Consider an unrolled implementation of this, with x running fastest and y slowest:

for(int y=0; y<L; y++)
for(int x=0; x<L; x+=4) {
 B[y][x  ] = 4*A[y][x  ] - (A[y][x+1] + A[y][x-1] + A[y+1][x  ] + A[y-1][x  ]);
 B[y][x+1] = 4*A[y][x+1] - (A[y][x+2] + A[y][x  ] + A[y+1][x+1] + A[y-1][x+1]);
 B[y][x+2] = 4*A[y][x+2] - (A[y][x+3] + A[y][x+1] + A[y+1][x+2] + A[y-1][x+2]);
 B[y][x+3] = 4*A[y][x+3] - (A[y][x+4] + A[y][x+2] + A[y+1][x+3] + A[y-1][x+3]);
}

A[y][x:x+4] does not align over all operations

← 4 − ( + + + )ϕx,y ψx,y ψx+1,y ψx−1,y ψx,y+1 ψx,y−1
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Data layout transformations
Stencil codes

for(int y=0; y<L; y++)
for(int x=0; x<L; x+=4) {
 B[y][x  ] = 4*A[y][x  ] - (A[y][x+1] + A[y][x-1] + A[y+1][x  ] + A[y-1][x  ]);
 B[y][x+1] = 4*A[y][x+1] - (A[y][x+2] + A[y][x  ] + A[y+1][x+1] + A[y-1][x+1]);
 B[y][x+2] = 4*A[y][x+2] - (A[y][x+3] + A[y][x+1] + A[y+1][x+2] + A[y-1][x+2]);
 B[y][x+3] = 4*A[y][x+3] - (A[y][x+4] + A[y][x+2] + A[y+1][x+3] + A[y-1][x+3]);
}

An alternative is to change the data layout so that we vectorize over distant elements. I.e. we
can reshape the data layout:  

from: A[y][x] <- A + y*L + x  
to: vA[y0][x][y1] = A[y0+y1*L/4][x], and re-write the kernel:

for(int y=0; y<L/4; y++)
for(int x=0; x<L; x++) {
 vB[y][x][0] = 4*vA[y][x][0] - (vA[y][x+1][0] + vA[y][x-1][0] + vA[y+1][x][0] + vA[y-1][x][0]);
 vB[y][x][1] = 4*vA[y][x][1] - (vA[y][x+1][1] + vA[y][x-1][1] + vA[y+1][x][1] + vA[y-1][x][1]);
 vB[y][x][2] = 4*vA[y][x][2] - (vA[y][x+1][2] + vA[y][x-1][2] + vA[y+1][x][2] + vA[y-1][x][2]);
 vB[y][x][3] = 4*vA[y][x][3] - (vA[y][x+1][3] + vA[y][x-1][3] + vA[y+1][x][3] + vA[y-1][x][3]);
}
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Data layout transformations
Stencil codes

Shuffling of the elements is still required but restricted to the boundaries. E.g. for periodic
boundary conditions, the original code at the y=0 boundary would be:

y = 0;
for(int x=0; x<L; x++) {
 B[0][x] = 4*A[0][x] - (A[0][x+1] + A[0][x-1] + A[1][x] + A[L-1][x]);
}

which requires shuffling of the boundary element at y=L/4-1 of vA:

y = 0;
for(int x=0; x<L; x++) {
 vB[0][x][0] = 4*vA[0][x][0] - (vA[0][x+1][0] + vA[0][x-1][0] + vA[1][x][0] + vA[L/4-1][x][3]);
 vB[0][x][1] = 4*vA[0][x][1] - (vA[0][x+1][1] + vA[0][x-1][1] + vA[1][x][1] + vA[L/4-1][x][2]);
 vB[0][x][2] = 4*vA[0][x][2] - (vA[0][x+1][2] + vA[0][x-1][2] + vA[1][x][2] + vA[L/4-1][x][1]);
 vB[0][x][3] = 4*vA[0][x][3] - (vA[0][x+1][3] + vA[0][x-1][3] + vA[1][x][3] + vA[L/4-1][x][0]);
}
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Practical
Two example kernels to exercise the concepts learned



Practical: kernel computational intensities
Matrix-matrix multiplication

Consider a matrix-matrix multiplication: 

double C[M][K];
double A[M][N];
double B[N][K];

for(int m=0; m<M; m++) {
  for(int k=0; k<K; k++) {
    C[m][k] = 0;
    for(int n=0; n<N; n++) {
      C[m][k] += A[m][n]*B[n][k];
    }
  }
}

Compute  and  as a function of the matrices' dimensions

Identify when it is compute- and when is it memory-bound on, e.g. Juwels

= ⋅CM×K AM×N BN×K

NFP NIO
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Practical: kernel computational intensities
Complex linear algebra

Consider the operation: , where the scalar  and the
vectors  and  are complex

_Complex double x[N];
_Complex double y[N];
_Complex double a;
for(int i=0; i<N; i++) {
  y[i] = a*x[i] + y[i];
}

Compute  and  as a function of the matrices' dimensions

Identify when it is compute- and when is it memory-bound on, e.g. Juwels

= a + , i = 1, . . . ,Nyi xi yi a
x y

NFP NIO
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