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Motivation

outline will be presented after motivation
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Clasification of hadron states

these lectures: QCD, no electro-weak interactions, only strong decays
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decay strongly
not eigenstates of QCD

can not decay strongly:
pn DD* DK
deuteron, X(3872), D.,*(2317)



L states well below
threshold

Mesonic resonance and bound states

G

a strongly decay: |
resonances

—
O candidates for
shallow bound st.

(analogues of deuterium)

Sasa Prelovsek

&
P
n
HW; or owas f

p(770)
w(782)

n(958)
f5(980)
a(980)
#(1020)
hy(1170)

by(1235)
a4(1260)
f2(1270)
f,(1285)
n(1295)
r(1300)
ap(1320)
f5(1370)
+ hy(1380)
m(1400)

n(1405)
f1(1420)
w(1420)
+ f5(1430)
ap(1450)
p(1450)

K D (2007)°
K.© D'(.2010)*

Ko (800) or i; Do.(24°°)°
K (892) Dy, (2400)*
K1 (1 270) D ’ (2420) 0
K1 (1 4w) D1 (2420) B
K (1410) D,(2430)°
> (1430 02.(2460) £
ﬁgfg‘gﬁn D(2550)°
K(1630) [X(2600)
K1(1650) D'(2640)*
K'(1680) D(2750)
K»(1770) -

K5 (1780)

K>(1820)

K(1830)

QCD in finite volume

D (2317)*
Dsl (2460)i

D,(2573)
D, (2700)*
D, (2860)*
D;(2860)*

D/ (3040)*

slightly below DK
D*K



Hadronic resonances appear in scattering
as “bumps” in cross-section

in experiment and in theory one determines:

decay time (via strongint.) : |

uncertainty in E: C=#/1
E . I'=1-300 MeV center-of-momentum
xample: p ey
e i E(mm)
(p)
\ mR
ALL)=(1,1) E) < |T(E)|? = 2

0

§
il _
W U . . .
g simplest Breit Wigner
>/T\_{<u . scattering amplitude
(&D in fihite volume 5
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Some examples from experiment

https://Ihcb-public.web.cern.ch

there is great data from other exps as well!
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https://lhcb-public.web.cern.ch/

Candidates/ (1 MeV/c?)

Cconventional charmonium resonances: ¢ ¢

e 1= 3T PAM

4000'_ T J T T [I I T II T T I 1 T I T I j T T T T I T T T T :
lx"mm_i TG | |— DD  LHCb preliminary -
3500 ’ vz DTD ™ =
m * | ;
A000E E
2500 =
20001 =
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500/ /

O: { %

3.7 4.2
m GeV/c?
DD th. b Gaye]
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LHCb march 2017

o %k
Candidates for conventional hadrons: excited QC 170304639
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é’ 400+ B
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=
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E(EF K7) [GeV]

five narrow resonances
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MeV)

Weighted-candidates/(2

Candidates for exotic hadrons: pe€ntaq uarks Pc

LHCb 2019

i
D
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| —data LHCb
1000 '_— total fit ; preliminary
. — background
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Fully charming tetraquark:cccc

Weighted Candidates / (28 MeV/c?)
S
S
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[BESII & Belle

Candidates for exotic hadrons: tetraquarks Zc+
2013, PRL ]

Example: Z.*(3900)
Z71(3900) — J/¢p

4 Data

—— Tota fit

--«+ Backgrouna fit
-r= PHSP MC

[ sidevans

8

lllllfll'll'lllll

Events / 0.01 GeV/c?
8 8 8 8

o

37 38 39 40 *
E(J/y nT) [GeV] .

M = 3900 MeV . T =30 MeV a number of other exotic hadrons

were discovered in past fourteen years ..
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Qutline for all lectures

1. scattering in continuum

* shallow bound states, virtual bound states, resonances

* poles of scattering amplitude T in complex energy-plane ...
2. lattice QCD in finite volume

e extracting eigen-energies E, of two-hadron system

e derivation of Luscher's relation between E,, and scattering matrix T in QFT
3. (simple) examples: lattice studies of one-channel scattering

* bound states, virtual bound states, resonances

4. scattering of particles with spin: construction of two-hadron interpolators

coupled-channel scattering

Sasa Prelovsek QCD in finite volume
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Disclaimer

The lectures do not present review of lattice simulations
Specific lattice results are shown just as examples

Often results based on less fancy analysis are presented for simplicity
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For an overview of the literature: consult papers or review papers

Scattering processes and resonances from lattice QCD
R. Briceno, J. Dudek, R. Young
1706.06223, Rev. Mod. Phys

The XYZ states: experimental and theoretical status and perspectives

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. Thomas, A. Vairo, C.-Z. Yuang
1907.07583, Physics Reports

(there is section on lattice results)

The Belle Il Physics book, Quarkonium(like) Physics (chapter 14)

N. Brambilla, B. Fulsom, C. Hanhart, Y. Kiyo, R. Mizuk, R. Mussa, A. Polosa, S. Prelovsek, C. P. Shen
1808.10567, Progress of Theoretical and Experimental Physics

(there is section on lattice results)
Lattice sectroscopy with focus on exotics
S. Prelovsek

2001.01767, PoS Beauty 2019

proceedings of Lattice conferences, paralell or plenary talks
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Outline, lecture 1

Scattering in continuum

shallow bound states, virtual bound states, resonances

* how do we identify them once T is extracted

 polesof Tincomplex energy-plane, Riemann sheets

e partial waves : =0, [>0

e near-threshold behavior

 example: spherical well potential
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T=scattering amplitude
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Hadrons

Conventional

Normal baryon

X

Normal meson

valence quark

+ glons
+ qq pairs
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Exotic

minimal valence content

44944

tetraquarks

q q q q q pentaquarks

qqG

hybrid mesons

all exp discovered exotic hadrons

are resonances or shallow bound states

Terminology in this talk: tetra(penta) quarks
indicate just the number of valence quarks in
the state; it is not meant to say anything on
how quarks are clustered in them

16



Current status

exp. discovered exotic hadrons not easy for lattice QCD
)

P., Z., X(6900), ... (several strong decay channels)

some exotic hadrons identified on lattice =~ «— (too) difficult for experiment

bbud ,bbus those two not discovered yet

many challenges left

experimental progress and results are impressive and motivating
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Scattering in Nonrelativistic Quantum Mechanics

Sasa Prelovsek QCD in finite volume
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Schrodinger equation

o L?
_) ¥ 2mir? + V(T)‘ »(r, 9, ) = E(r, 9, ¢).

 2m dr2

A2 d?2 RA(I+1
| a+1)

R=relative distance

m=reduced mass

Sasa Prelovsek

2mr?2

QCD in finite volume
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Schwabl, Chapter 18

Scattering

¢(.23) = 'PT 4 Meipr for large r
r

i
In (e)+ out (e'®") Only out

do dN o
0" N.do | f(6)]

Plot of V(r)
{11 Y NS522777

-\ N

sisisli s \\\ :_:- ///

20
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Scattering, |=O (S-wave) Schwabl, chapter 18.3

dominant at small E

Y(z) ox ePT + @ew’"

TD

in (e™") only in the first term

if A >> object (low p) : s-wave dominant

on the other hand, for r>R where V(r)=0:

- g a7 e+ V)] ) = Bu(r)

0)
_ —’50 +2ido ipr —ipr
M=t QM interpretation: = E—]e e’’’ + e P
/\ sin(pr) T
v wir) e r S=<out|in> S(E)
" - _ 2ib0(E) o
l g /\ L 4(r) M r>R S(E) € 9 S S I

] T
J\/ \ unknown <R conservation of prob.

complicated
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Scattering, |1=0 (s-wave)

dominant at small E

w(m) x ezp:z: 4 L7/ f(e)

in (e™) only in the ﬁrst term

on the other hand, for r>R where V(r)=0:

B e P R+ 1)
2m dr? 2mr?

0
u(r) = A sin(pr + dp)

¥ V(r)] u(r)

= FEu(r)

Schwabl, chapter 18.3

62?:60 _ 1

21 D

Sasa Prelovsek

plot of s-wave scat
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Scattering, |=0 (s-wave)

62i50 . 1

fi=g = 2 p

different normalizations of T are used

S(E) = e*0E) =T1+2ip f(E)=1+2ipT(E), f(E)=T(E)

2100
e —11 o 1 il 1
T= —— ~ =¢%5gingy - = =
2t p p  cotdg—i p
P 1 T=scattering amplitude:
o P cot (50 — zp basic object of these lectures
SiIl2 (50

o=4n |f|* =4n =
D
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Spherical well in 3D : bound state (I1=0)

wlr)
l
Es0 g., ?;.4 P‘| P}\t u(r)
= ’ r)=R(r)y=——= (=0
viy
= Vo )
Asingr  Be™
u(R)= A singR =B o PR 1 1 example: deuterium (pn, J=1)
—tangR =—— =% =36 Me\, R=2 fm, m=m,/2
u'(R)=gAcosqgR=-1plBe™| 4 ya

q?/2m=E+V0  p*/2m=E<0
p=+ i | p| . we will call this Riemann sheet 1, Im(p) >0

Aim: show that scattering matrix T(E=Eg) = oo at the energy of the bound state

on Riemann sheet 1
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spherical well: scattering with |1=0

A  ly)

A N /
E >0 \-\ [ - E > 0 : scattering

\. relations apply also forE< O

v\r) p: momontum of a scattering particle in cmf

A singr B sin(pr+09,)

1 1
dividing both eqs —tan qR = — tan(pR + 5)
u(R) = AsinqR = B sin(pR + §) q p

u'(R) = qAcosqR = p B cos(pR + )

0,(p) = arctan(gtan(qR)) - pR+nw
q

example: deuterium (pn, J=1) 0_0;(?)'
V0=36 MeV, R=2 fm, m =m,/2 T — 1 20261
. 0.024}
E=Eg= —2 MeV pcgtéo —p 0.022}
0.020f

0.018}
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Bound state

bound state corresponds to a pole of the scattering

matrix T(E=Eg) = co below threshold

forp=i |p| (Riemann sheet 1)

pole threshold

* v .
P:‘. Ipl ReE
Pe=ilf0\

pole of T at the position
of the bound state

IT(E)
1.0y

0.8}
0.6}
04}

0.2}

- E [MeV]
-4 -3 -2 -1

Sasa Prelovsek

example: deuteron (pn, J=1)
V0=36 MeV, R=2 fm, m=m,/2
E=E;= —2 MeV

E=p2/2m, p==t i V2m|E| , take +

1

T = ,
pcot dg — ip

the plot

below indicates a pole for p=i |p| (sheet 1)

extracted from lat

p cot(del) [blue] ; ip=-|p| [orange]

4

QCD in finite volume

> L

_1d.

—
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Bound state in QM

u(r) o sin(pr + dp) o e Prtido | o=iPr—ido o o+2i00 GipT 4 o—ipr
-

S=co, p =1ilpl

only exp falling part

r>R

Bound state in QFT

1 1
bound state/ T(E) e -~ = . -
\ s—m Ecm—m

T(Eqp = m) =

scattering matrix has a pole T(E=Eg) =

at the energy of the bound state
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Virtual bound state

bound state corresponds to a pole of the scattering

matrix T(E=Eg) = oo below threshold for p= -i |p]|
(Riemann sheet 2 )

pole threshold
% \ .
' more on Riemann sheets-
p=-i |p| . .
in few slides
1
T = ,
pcotdg — ip
[T(E)I
1 N N 1 N N N N " N 1 2 s N 1 E ev
-04 -0.2 0.2 0.4 MeV]

Sasa Prelovsek

example pn, pp, nn: J=0

(this is not deuteron)

V0=23 MeV, R=2 fm, m=m,/2
pole at E = - 160 keV below th
in nature E = - 60 keV

E=p2/2m, p=+ i V2m|E| , take -

the potential is just not deep enough

to form the bound state

p cot(del) [blue] ; ip= |p| [orange]
20

15;://

10}

-04 -0.2 0.0 0.2 0.

'4 E [MeV]

QCD in finite volume 28



Large increase of rate above threshold

in case of shallow (virtual) bound state

dN/dtx j o < p |T|?

in both cases : pole below threshols affects scattering above th.

example: deuteron (pn, J=1) example pn, pp, nn : J=0

V0=36 MeV, R=2 fm, m,=m,/2 V0=23 MeV, R=2 fm, m=m,/2

poleatE=Ez= —2 MeV pole at E ~ - 160 keV
2

PITE) pIT(E)|?
0.035

0.015} 0.030
0.025}

0.010 0.020f
0.015}

0.005}f 0.010}
0.005}

0 10 20 30 4.0 5.0 £ MeV] 2 4 6 8 10

Sasa Prelovsek QCD in finite volume

~ E [MeV]
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How to search for shallow
bound state or virtual bound state T
on the lattice?

1
~ pcotdy — ip

I'll show lattice exmaple of D,;"(2317) bound state in DK scattering, s-wave

e extract T, 6orpcotd asafunctionofE

lat: these can be determined for real E above and somewhat below th.

exp: real E above th. only
& =

P:] \P‘ ReE
Po=14 IM

* bound state : pole in scattering matrix S or T for p=i |p|

orpcotb=ip=-|p]

* virtual bound state : pole in scattering matrixSor T for p=-i |p|

orpcotb=ip= |p|
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before considering resonances

Intermezzo: 2 Rimann sheets & complex energies

relation between E and p outside the region of potential :

E=p2/2m E=ym? 4 p2 + /m?2 + p2

p is obtained from E by taking square root: square root is multivalued function

m2 —m3

_ 1
so far we considered real E: E>0, E<0: p=++V2mE ,p=Fi|p|

in general one considers also complex E by continuing T(E) to the complex plane: again p is obtained from E

for given E : p has two values : Riemann sheet defines which of the two applies
Riemann sheet 1 (“physical”): Im(p)>0 Example: p=i|p| (bound state pole is on this sheet)

Riemann sheet 2 (“unphysical”): Im(p) <0 p=-i|p| (virtual bount st. pole is on this sh.)

Sasa Prelovsek QCD in finite volume
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Continued Intermezzo

Riemann sheet 1 (“physical”): Im(p)> 0

example: 2m=1 p=t+V2mE = +VE

Riemann sheet 2 (“unphysical”): Im(p) <0

IM[E]
12

Re[E]

MySqrt[en_ ] := If[Im[Sqrt[en]] >= 0, Sqrt[en], -Sqrt[en]] ;

pval[en_, sheet ] := If[sheet ==1, MySqrt[en], -MySqrt[en]];
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Riemann sheet 1 (“physical”): Im(p)> 0 Q
Riemann sheet 2 (“unphysical”): Im(p) <0 x
Im[E
El,,

1.

Experiments explore real E above threshold : E>0

Physical scattering : E=|E|+i €pS  commmm—

Sasa Prelovsek QCD in finite volume

Continued Intermezzo

location of apole in T for bound state pole

location of a pole in T for virtual bound state

if poles are close below threshold:

they affect scattering in exp

33



Continued Intermezzo

Riemann sheet 1 (“physical”): Im(p)> 0 * location of a pole in T

for a resonance (we will see that next)

Riemann sheet 2 (“unphysical”): Im(p) <0

IM[E]
12

note: pysical axes is smoothly

another view
connected to sheet Il

If pole close to real axes:

affects scattering in exp. 34
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1

T

- pcot dg — tp

p cot(8) = f(E)

Sasa Prelovsek

Continued Intermezzo

poles of T are related to states:

(virtual) bound states and resonances

function of E, not of sqrt(E) : without proof

no sign ambiguity, same on both sheets

continuation to complex plane: E in f(E) replace by complex E

sqrt(E), multivalued, the sign of this part depends on the sheet

continuation to complex plane: E in sqrt(E) replace by complex E:
Im(p)>0: sheet 1 ; Im(p)<0: sheet 2

QCD in finite volume 35



focus on relativistic BW where E=2,/m? + p?

Resonances: most hadrons are resonances

AN

WV

resonance s Tz 1 | = i;_ 1 J
Wednesday, 9 September 2020 21:05 P l‘p'ta-"’l, F i +‘L()- 'y ’l Daw)
Moy Wi¥=0 '};:%—1%0 phwre Jldﬁ,t al . wuga, e’ 1
o 8 i pe—€" . Eamg '
/PQTM/\(’IV\NKOL«. ity & R 99" |
ET o slope™ T :
.ET;@%JJ/,ST b NS
+ Er Yroct Wiguer L | Wy
T P MA]L E - 6T oA O e d(fuuh,u.(& Q"t’ l‘Tl 1
Muost (,awom&a AN gumﬁﬂ“a @OV A }** \W‘ A d
14¥1 U.M CO“/"(A b q f E i
[ p s % ' " e
pi-E = ot e
uf& = o S Y P (ﬂt'y m‘fz’ E \i\A
L‘. %'L P ; /E7~ E‘ 1. .lL
1 \\]\ 1 rest
b >
( - Mzﬁ\l\f
M ral By T(E|=3 ™ , o pole i [ roing wide 0 iy
SL@{)L —T
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focus on relativistic BW where E=2,/m? + p?

Cowtr mue ol o:( TEN #o  vuwply EI?O&

ET
T3

E';. 0 &J(.
P w']‘t—e’*—lgr V

Tew « pot v Wp~-E-i€M=0  E+ifl-ues

0
- . 1 3 |
E;\)"i' R+ b - iwn‘kzr t_cwl-él_
&

Om whar Plowwowm Chet ic Hee pole localedl ?

Wlp)2o  dettr wime sign of Tulp) o Hee pod
- p=petd = A-p 8 AB>0
! peot T-ip P Pdc:9 P |
.{Q/w’hx il EIPI
Bpl'l-ftp“ﬂ:o
I S VPO
P 2  Inlpien
Resomauu  Correspomas Yo o po& i T
on Hhe Secomd Uommom (heeT.
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ImE
4
th mg ReE
- N T -
r/2 ®

s pot olfedis T(Ep)
Epu IEP“H\'a phycil 8XeL

ALY L
Pty w6

E (}’L

this derivation applies for s-wave
and relativistic BW where E=2,/m? + p?
p cot(del) = E (mR2-E?)/g?

~ const (mR?-E?)

~A-Bp? AB>0

[E depends very mildly on p in relativistic case]
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T oX thas poﬁ S gmooﬂ«&O Lo Lk ed
Fo T om Hae p'Na fieel  Quw: see plots

ow Hae Ui W Ggudcantty offedis
St,oi*ﬁh.wa [ B pe L eud (Epa) i ] udl Fo lfug,

The nonrelativistic derivation that resonance pole is at E=mg-i /2 on Riemann sheet Il

Perl, High Energy Hadron Physics, pages 345 (last paragraph) — 347.
At the end of lecture 1 | attach a pdf for pages 342-347,

which represent a self-contained derivation of poles in the complex energy plane

Nobe s T showld have mo  pod ) o4y o
(il oxis ow  Shet T - violoXioy
of mu:au‘Ha

Sasa Prelovsek QCD in finite volume
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Summary: hadronic resonances appear in scattering
as “bumps” in cross-section

in experiment and in theory one determines:

decay time (via strongint.) : |

uncertainty in E: T=h/t I
I‘=1_300 MeV center-of-momentum
Example: p 05} energy
=1 i E(m)
n(p)
\ mR
ALL)=(1,1) E) < |T(E)|? = 2

U S o l
® W U : o
= simplest Breit Wigner
Sasa Prelovseﬂ d (a) in fihite volume 39



ol

>.D

| 2019
i LHeb

prelimina

— total fit
— background

What was covered last time ?

Weighted-candidates/(2 MeV)
=
o
o

- most of hadrons are strongly decaying resonances |

L1
4%00 4250 4300 4350 4400 4450 4500 4550

E(J/4 p) [Gev]™

they need to be inferred from scattering in exp or on the lattice

ry

4600

[MeV]

- two-hadron scattering in continuum T — 1 i
so far s-wave (1=0) fretoy —Ap G 8 fe P “u 5
p momentum of particle in cmf )D : \——J;—-//u\
P s iy
- real E -> complex E, E=E,, e = mi
Riemann sheet | if Im(p)>0
Riemann sheet Il if Im(p)<0
- location of pole in the scattering amplitude T(E) help to identify ImE
bound state: pole for real E below threshold Riemann sheet | 4
virtual bound state: pole for real E below threshold Riemann sheet II th
resonance: pole away from real axes E=m-1/2iI"’  Riemann sheet Il —1— 00
O
these poles affect physical scattering ("peaks in ")
if they are close to physical axes (green line) Riemann sheet | green:1 red: |l

Sasa Prelovsek QCD in finite volume
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Higher partial waves, >0 P(r, 9, ¢) = R(r) Yim (9, ¢)

B ) R2l(1+1)
2m dr? 2mr?

' vm] u(r) = Bu(r)  R(r) = u(r)/r

outgoing wave

outside the region of potential _*

inside: 1 .
Ri(r) = 5 (M2 (kr) + € P (kr)

i R: complicated

Ry(r) = €% (ji(kr) cos 8 — ny(kr) sin &)

—D
R;~const . —sin (kr——+8,)f orlarger
v(r\ r 2

S=e=142pT

SS*=l, S parametrized in terms of phase shift

sometimes norm. of

T = :
p COt 5l - Zp T chosen diferently
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solutions of ordinary diferential equations: tricvial with Mathematica NDSolve

R & RA(+1)

" 2m dr2 2mr?

+V(r)| u(r) = Eu(r)

m=1; 1=2; en=0.5; V[r ] :=-20+xExp[-r*2]; eps =102 (-5);

rep = NDSolve [
{(-u'""[r]1/(2+m) + Lx (L+1)/ (2*xmxr*2+eps) xu[r] +V[r]*u[r] ==enxufr],
u[e] =0, u'[0] =1}, u, {r, 0, 10}]

Plot([u[r] /. rep, {r, 0, 10}]

{{u - InterpolatingFunction [ Demsin U0 10 ] }}

Output: scalar

60000 |

T

40000

20000 |

~20000 |

T

-40000

T

-60000

Screenshot
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Near-threshold behavior of phase shift

Taylor expansion in p for general potential and general partial wave |

lim _,tand,(p) = p*™ | [ p** cotd,(p)=C+O0(p*)

"Proof": Landau: QM, Sections 132 & 33, p >k  Y(r)=R/(r)Y,,

I gi ' !
Ryt ),(21+ Dt ( ) smkr+cz(_l), o (d) cos kr
k3 i+1 rdr r (1= \rdr r

|l /
kr >>1: R,wcl Slhsill (kr—n—1)+ G X Cos (kr—n—l)'
rki+1 2/ r@i1-1Y 2

kr >>1 : leconst. —l—sin (kr—%l-l-sz):
r

Ry ~ st [ cosdy sin(kr — wl/2) + sind; cos(kr — ml/2)]

Cy
o RI-DNEIF DN

tg 8, 8,—- k21+1

Sasa Prelovsek QCD in finite volume
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Effective range expansion

p** cotd,(p)=C+0(p*) p2tleotd, = C+Dp®+E p* +..

I 1T ,

s-wave: p cotdy(p) = a_+5r0p a0: scattering length
0

exercise: s-wave scattering on spherical potential well

» g =2uV, + p* ={/C? + p’
9 (p) = arctan(gtan(qR))—pR+nn - Taylor expanding
CZ
C . E _ C2 _ 3 2 . 4 1 1
pcotéo(p)= -C+Tan[C] 6 (3 (C-Tan[C))? C?-CTan[C] ) P=+0lp] =—+—1p
| J g 2
' N u(()
N\ 2 /
1/30 E >0’  \‘ [ /\\\

‘ {1 | | 3 P
E<o0 \\'—J U/ 7 \
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CHAPTER

19

Analyticity and Crossing
in the Interaction
of Spinless Particles

15-1 Introduction. For the last two decades elementary particle physicists
have felt that the application of perturbation theory to strong interactions was
an uncertain occupation, possibly a hopeless occupation. The qualitative successes
of the one-particle exchange model must be balanced against the many quantitative
failures. Therefore, particle physicists have tried to develop more fundamental
approaches to strong interaction theory. And most of these approaches are based
on or related to the treatment of scattering amplitudes as analytic functions.

As with so many other parts of strong interaction theory, we do not possess
a rigorous and complete theory of the analytic properties of strong interaction
amplitudes. Rather, we have constructed a loose theory based on different types
of arguments and insights. To illustrate some of the origins of the theory, we
342

NONRELATIVISTIC PARTIAL WAVE AMPLITUDES AND ANALYTICITY 343

discuss the analytic properties of nonrelativistic partial wave amplitudes in Sec.
15-2 and perturbation theory and analyticity in Sec. 15-5;in Sec. 15-6 we show
how the general unitarity relation relates to the singularities of the amplitude.
We do not go into the derivation of analytic properties from axiomatic quantum
field theory.

The incompleteness of the theory of the analytic behavior of amplitudes
pervades not only the foundations of theory but also the applications of the
theory. We cannot calculate an amplitude using the analytic properties alone
because in general we do not know the residues and discontinuities at the
singularities. We only know the position and nature of the singularities. Therefore
the analytic nature of the amplitudes is used primarily as a guide and as a frame-
work for describing the amplitudes. We illustrate this in Secs. 15-2 and 15-11 with
the examples of bound states and resonances. Another illustration is provided by
the development of the dispersion relation concept in Secs. 15-8 and 15-10.

15-2 Nonrelativistic Partial Wave Amplitudes and Analyticity. To begin our
study we consider nonrelativistic elastic scattering, for by starting with non-
relativistic quantum mechanics we can most easily develop an understanding of
the significance of the analytic properties of amplitudes. Consider a real,
spherically symmetric potential V(r) = (#*/2m)U(r). The radial Schrodinger
equation for partial wave /, with (1) = (k% 1)) Y™ (8, 9), is

2 2
1—""1%"—')+ K -U@) - ’('; l)]u,(kz, =0 (15-1)

where k% = 2mE;petic.- We limit the form of U(r) by requiring that as r
approaches zero, U(r) must not go to infinity as fast as 1/r%. As r— e, however,
U(r) must go to zero faster than 1 /r?. Asr—0, uy(k?, r) has two solutions

u k3, ry— A4V (15-2a)
r—0

ulk®, r\— A (15-2b)
r—0

Physically k? must be real and positive. But let us consider solutions of
Eq. 15-1 for complex values of k2. If these solutions u;(k?, r) obey Eq. 15-2a,
they are regular analytic functions of k2 for finite values of r. That is, they are
analytic functions without singularities in the complex k? plane. We apologize
for not giving the proof of such an important statement, but the proof is based
on the theory of differential equations and cannot be easily summarized here
(15DE).
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For scattering problems we are interested in the asymptotic form of u, (k% 7).
From Eq. 3-5 we have

B 2 o
w(k*r) — 21_.;"[31("2)‘-’""—(—1)19_'”] (15-3a)
| S
or the alternate form
wk®r) = [o7(K>) e +¢f (K*) e™] (15-3b)

We have only passing interest in ®; (k?), the Jost functions, for we are really
interested in using @7 (k%) to study

&7 (k*)

2y = (_ 1y +1
S = (1 e

(15-4)
Our objective is to determine the analytic nature of S;(k*) on the complex k*
plane. As we shall see the singularities have direct physical significance.

But before we can do this we face an annoying task. Since Eq. 15-3 contains
k= \/I?I which is a double-valued function of k2, we must exercise care in
associating a particular value of k with k2. We write k> =k ¢'® and
k=" (cos ¢/2 + i sin ¢/2) where  is real and positive and 0 < ¢ < 4x. Then
we use two Riemann sheets to map k onto the k* plane; the sheets are defined
below and pictured in Fig. 15-1. The k? plane is then cut along the real Kk axis
from zero to infinity.

IL =unphysical sheet
I=physical sheet -I

+Im kz/

+Re k2

Fig. 15-1 The k2 analytic plane for S;, showing the two
Riemann sheets.

Resonances ->
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sheet I, called the physical sheet, 0<¢=<2nm, Imk>0 (15-52)
sheet I, called the unphysical sheet, 2r<¢<4n, Imk<O0 (15-5b)

The names physical sheet and unphysical sheet are more conventional than
meaningful. In all our discussions of the analytic behavior of amplitudes, we have
to describe how amplitudes for complex values of the kinematic parameters are
connected with the physical amplitudes for the real values of the kinematic
parameters. Here we adopt the convention

f(Re k +i Im K)im =5/ physical (Re k) (15-6)

Hence the designation of sheet I as the physical sheet. The information contained
on both sheets is redundant, for taking ®] as functions of k we have

@y (k)= ®; (k)
Sn(k?) = Sii(k?)
where the subscripts I, II denote the sheets.

for Imk>0

(15-7a)
(15-7b)

Exercise 15-1.
(150MN).

Derive Eq. 15-7 using Eq. 15-3b; then derive Eq. 15-8. See Ref.

In addition, the reality of the coefficients in Eq. 15-1 leads to the relations
Bi(K2*) = [6f (k)] O (K**) = [&7(kP)]* (15-8)

Examining the poles of S;(k?) in the complex &? plane, we see that S;;(k?)
will have a pole at k¢’ if ®; (k) has a zero at that point. In that case, Eq. 15-3b
reduces to

ufkg.r) = [®i(ky)) e Rekoe™] (159)
psos

Here b = Im k¢, and b is positive according to Eq. 15-5a. Therefore, the right-
hand side of Eq. 15-9 represents a wave function that is localized in space and
normalizable. If k¢ is real and negative, the pole in Sy;(k?) at k* = k¢ represents
a bound state of angular momentum/. We are in a nonrelativistic situation, and
the binding energy of this bound state is simply k¢*/2m. If a pole in S;;(k?)
occurs at a point not on the negative real k> axis, we cannot use this bound
state interpretation; and there is no other physical significance to ascribe to such
a pole. Indeed, conventional potentials do not produce poles in Sy(k*) which
are off the negative real k2 axis. (See, however, Refs. 1SOMN and 15FR.) Thus a
pole in Sy(k?) occurs only on the negative real k? axis and corresponds to a
bound state.

Next we consider the zeros of ® (k?). Suppose a zero occurs at ko* =
Re ko2 +i Im kg%, with Re k> > 0 and Im k¢ > 0. Then by Eqs. 15-4 and 15-7
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Su(k?) has zeros at Re ko® i Im k¢’ (15-10a)
Sju(k?) has poles at Re k¢’ i Im ko” (15-10b)

Let us further suppose that Im ko* < Re k. Then the zero of Sy at Re ko” +
i Im ko? and the pole of Sy at Re ko> — i Im k¢’ lie close to the point
k*=Re kg on the real k? axis.

Exercise 15-2.  Fill in the steps in the arguments just presented. Use Eq. 15-5
to explain which zero and which pole lie close to the real k? axis.

The behavior of S;(k?) in the vicinity of k® = Re k* must be dominated by
the nearby zero and pole. Hence for real values of k? near Re kg, the simplest
form of S; is

k* — (Re kg +ilmkg)

S(k*) =
1 k* — (Re kg2 —ilImkg?)

(15-11a)

Note that Eq. 15-11a must and does fulfill the condition |S;?| = 1. We can bring
Eq. 15-11a into a very familiar form by setting Eq = Re ko*/2m and I' =
Im ko2/m, giving

—il
SE)-1=—7T—7FT"+ 15-11b
W) (E —Eg) +iT)2 ( )
2
+Imk cut on positive
real k“ oxis
2 -
zero ot kg associated
Sound siote—l [ with resonance
e +Re k2
conjugate zero far
from physical region

I=physical sheet

2
+Im k cut on positive

real k? oxis
conjugote pole far
® from physical region

+Re k2

°
{ pole ot k3* associated
with resonance

1 =unphysical sheet
Fig. 15-2 Some singularities of S; in the %2 analytic plane.
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which is the Breit-Wigner formula for a resonance! In Sec. 5-6 we gave a rather
limited derivation of this formula. But the derivation offered here, which is
based only on general ideas about the analytic properties of S, indicates the
fundamental nature of the resonance concept. A resonance occurs whenever
S;u(k?) has a pole close to the real positive k? axis (also see Sec. 15-11).

As the pole in Sin(k?) moves away from the real axis, the influence of the
pole and the zero weakens, and other terms begin to dominate S;(£). From a
more physical viewpoint, the Breit-Wigner curve becomes flatter and more
difficult to detect. Thus a pole in Sin(k?) that is far from the positive real axis
cannot be given a direct physical significance.

In Fig. 15-2 we show the singularities discussed so far. Among singularities,
not covered here is a very important branch point that occurs on the negative
real k2 axis. The position of this branch point and the discontinuity across the
cut depend on the potential U(r) in Eq. 15-1. But we must turn our attention
to the relativistic problem, and we refer the reader to Refs. 15DE and 1SOMN.

15-3 Two-Body Reactions—Kinematics and Cross Channels.  To begin our
study of the analyticity of relativistic amplitudes, we must discuss the kinematics
that relate two-body crossed reactions. For a reaction a + b = ¢ +d, the crossed

e* 4

(a)

(b)

(c)

Fig. 15-3 Examples of crossed reactions in perturbation theory.



