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Summary of last week

® ChPT is an expansion in powers of external pion momenta and quark masses
P’ M M
(4mf)>  (4nf)?  (dnf)?

dimless expansion parameters:

® At a given chiral dimension D = 2N+2 only a finite number of

O loops (L < N) tree |-loop | 2-loop
. . LO Lo
O and vertices of Ly with d < 2N+2
NLO | L4 Lo
contribute. NNLO | Lg L4 Lo

® At a given chiral dimension D = 2N+2 only a finite number of LECs contribute

O These are sufficient to renormalise the theory and render the theory finite
The chiral lagrangian by construction contains all terms compatible with the symmetries

O Only a finite number of renormalised LECs need to be determined (pheno, lattice)
for ChPT to make predictions.



Outline Part 4

® Loose ends (cont.)
O Anomalies
O Transformation law of the pion fields
® Some selected applications for Lattice QCD
O Finite volume corrections
O Non-zero lattice spacing corrections: Wilson fermions

O Multi-pion excited state contribution



Anomalies



Anomalies

Sofar: Lcwpr = Lo + L4 + ---  based on local chiral invariance

Observation: all terms involve an even power of pion fields
= invariance under inner parity m(x) — - 71(x)
= experimentally observed processes involving
an odd number of pion fields are not allowed/described

e.g. KK~ —— gtga 7Y . —
Something is missing: anomalous Ward identities !

» Local chiral transformations are anomalous in the regularized theory
There are additional anomalous contributions in the chiral Ward identities !

» In the path integral quantization anomalies stem from the
non-invariance of the fermion measure in the fermionic path integral



Anomalies

Consider infinitesimal local transformations R(x) =1+ iwk(z)T*

L(x) =1+ iw}(x)T*

D[F'] = D[F](1 + i67)

607 = —/d4xtr(wA(x)Q(:v)) WA = %(wR —wr)

0Z = 6Z|v,al independent of gluons, quarks, quark masses !
l“C vpo
Q[U(:C), a(x)] = = ehvr (UW/ (:l:)vpa (:U) + ... N¢:number of colors
-

N

field strength tensor Uy = 0,0, —

Important here: 0Z is explicitly known !



Anomalies

W[U/,CL/] _ /DF/] eiS[ "' al]

= /DF](I +i6Z[v, a)) e*SFval

_ /D[F]eiS[F,v,a]+i52[U,a]
in short; Seg[F', v, d"] = Seg[F,v,a] + 0 Z[v, al
recall Lect 2,slide 11: W', d'] = Wv,a] + W v, al
= W v, a]l = 0 Z[v, al 6Z[v,a] = /D[F]5Z[v,a]eiS[F’U’a]

» Contains the Wils with the correct anomalous contributions

» 0Z contributes to (some) 3,4,5 point functions involving the vector and axial vector currents
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Anomalies

ChPT has to reproduce this: Wess-Zumino-Witten (WZW) term ZIU, U, v, alwzw

- Z[U’,U/T,U/,CL/]WZW = Z[U, UT,U,CL]WZ\N—F(SZ[U,CL]
same as in underlying QCD

Expand in pion fields™

2 N,

T T2 ——— PPy (W@MW&,W@,)W@UW) + ..

5 mt-fields, contribution to
KtK~ —» gta 70

Z[U []Jr U G]WZW /d4

If a(x) =0, v(r)=—eQA,(x)

N, ¢€?
At v g 109, A A, + ...
/ 3 3272 f pT OvLpfo

contribution to
20— 7Y

*Full expression e.g. in
J. Bijnens et. al, hep-ph/9411232



Anomalies

Comment: Anomalies break the chiral WIs in a well-defined way
= ChPT is set up to reproduce this breaking

WZW term has no contribution to 2pt functions

WZW is O(p%)

- Lenpr = L2 + L4 + Lwzw + Lo + L + -

All />, in here are invariant under local chiral transformations



Transformation law of the pion fields



Transformation law for the pion field

Recall Lecture |, slide 44:

Question: How do the pion fields transform under G ?

Answer: There exists the |-to-1 map

@) — U@ e | Ze@0] it

that maps the pion fields onto the coset space G/H ~ SU(3)

U(x) transforms extremely simple (linearly) under R, L € G

Ux) —%— RU(x)L!



Transformation law for the pion field
Consider Lie groups Gand H c G
SSB @ n=dim G-dimH NGBs: m2,a=1,....,n; m=(xal, ...,

Applying a transformation g € G

g
T > 7' =p(g,T) Mapping p: GxM — M M: set of pion fields
Propertiesof @: |. ¢(e,m) =m
2. 90<919277T> — 90(91790(9277‘-))
First consider (g,0) m =0 is the “ground state configuration”

Using |.& 2. we can show:
a) Elements & with ¢(h,0) =0 form a subgroup H c G

eg. p(hih2,0) = ¢(h1, p(h2,0)) = ¢(hy,0) =0
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Transformation law for the pion field

a) implies that we can decompose the group in cosets, coset space = G/H

g1,92 are in the same coset if g1= g2h, he H

b) the function ¢(g,0) is a function on the coset space G/H:
p(gh,0) = ¢(g,¢(h,0)) = ¢(g,0) vgeG VheH
= the map @o(g) = ©(9,0) defines a map from the coset space into the set of 7 fields

@: GH — M

c) The map o is invertible: Suppose ©o(g1) = ¢o(g2)

= 0=¢(g;'91,0) = wolg; ", ¥(91,0)) = wo(g; ", ¥(g2,0)) = (g7 ' g2, 0)

= 91_192 e H g2 = g1h g1, g2 are in the same coset

= the map @o(Qg) defines a I-1-map



Transformation law for the pion field

a), b), c) = the map @o(g) defines a I-I-map from the coset space into the set of 7 fields

» to each s there exist a unique fin G/H

» the pion fields are the “coordinates” of the manifold G/H

Transformation of the pion fields: Consider 7 = @o(f) = ¢(f,0)

g
Actwithge G~ 1© ——> 7' =p(g,n)
= (g,0(f,0)) = »(gf,0) = o(f',0)

g

e

To get ;1" we “simply” need the coset of g f=f" ngI I ©g

g

frr— 7
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Transformation law for the pion field
Be specific for QCD: G =SU3)r ® SU3)L

H=SUB) V:R=L

2i
= G/H = SU@) U=exp (FW‘LT“>

g=(R,L) — [ = RL™! e G/H

g=gh=(RV,LV) — U=RV(LV) '=RVV 'L '=U

Trafo of U under some ¢

g =g9=(RR,LL) = U =RUL™!

linear transformation law

The transformation law of the pion fields is non-linear and more complicated



Finite volume ChPT



something before ...

Lattice QCD is formulated on euclidean space time

= continuum limit yields euclidean QCD
= corresponding low-energy effective theory is euclidean ChPT

2 2
B
- ﬁ;“d — Ztr[auUauUT] — f2 tr[M (U + UT] cp. with Lect 2, slide 23

Modifications compared to Minkowski spacetime

» O(4) invariance
» opposite sign of mass term

» Pion propagator:

d4p 1 p(x—
Ge(r—y) = / (27)4 p? _|_M2€p( 2



Finite volume ChPT

Consider QCD on a torus with V = L% and periodic/antiperiodic boundary conditions

= VWhat is the effect of the finite volume on correlation functions and observables?

Physical intuition (start from large or infinite volume and make it smaller)

® Lightest particles “feel” the FV first: lcorr = 1/ Mparticle
= QCD: Dominant FV effect due to the pions (less from the kaons)

® FV effect is expected to be small if lcorr / L is small ,i.e.if ML large
= Relevant measure is expected to be M, L

Questions: » How big are the FV corrections for a given M, L ?

» How rapidly is the infinite volume limit approached ?

Because the pions cause the dominant FV corrections
ChPT can answer these questions



Finite volume ChPT

Note: A 4-dimensional torus breaks Lorentz symmetry

Key results: » The chiral Lagrangian in FV is the same as in infinite volume
the LECs do not depend on the FV J. Gasser, H. Leutwyler;
Nucl. Phys B 307 (1999) 763

Sketch of the argument:

Consider finite temperature QFT: Ly = — + boundary conditions for the fields

but the same Lagrangian with T independent parameters

For spatial finite volume invoke hypercubic symmetry: same Lagrangian with
L independent parameters

= Finite volume effects stem from the pion propagator only



FV pion propagator

The periodic boundary conditions imply

Gr(z—y)=Gr(x —y+n,L,) ny, VA
= solution Gr(r—y) = Z Goo(z —y+n,L,)
, . 27
Fourier transform: Momenta are discrete Py = f”u
G 1 eP(z—y)
L(r—y)= I1LoLsly - p2 + M2 cp. with slide 17

Feynman rules for the vertices are the same as in infinite volume
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Example: FV correction to the pion mass

Simplifications  » SU(2) ChPT, mu=ma=m, tree level pion mass: MZ = 2Bm
» Ly=c0, Li=Lr=L3=L (finite spatial volume)

Gr(r —y) = ZGOO(QU —y + ng L)
- s orv(z —y)

=Goo(r—y)+ Y Goolz —y +npLy)
ni 70

This expression enters the loop diagrams for the self energy for x — y =0
(cp. Lecture 2, slides 8/9)

D dim M2 2
G (0) > O ( —Z 4+ In M2 + finite
1672 € 0

1 M —
For Orv use the finite expression Goo(2) = 42 \/—%K1 (MO 22)
2

modified Bessel function
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Example: FV correction to the pion mass

We obtain for z = (77L,0)  “pions wrapping around the torus”

oy (0 m(n): multiplicities

M? K MyL
0 24 1(v/nMoL)
1671'2 \/7M0L

m(1)=6, m(2)=12, m(3)=8,...

Putting both together leads to

M2 . M2 M? M2
the simple replacement rule 0 0 1 0 o) 0
imple rep u T 1nA2 > o HA§+ rv(0)
M M2 K1 (v/nMoL)
M2 — M2 (1 In Am )
= = Mo T ga e 32772 f2 g;o VML
— M? (1 n Z 4am Kl(\/ﬁMwL))
500 32772 12 prd ML

Here: drop higher order corrections (1 + In + Orv) = (1 + In) (1 + Opv)
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Example: FV correction to the decay constant

Analogously, we obtain the FV correction for the pion decay constant:

B ME . M K (v/nMyL)
f”’L_f<1_167r20f21 AZ 167r2f2 ;(}4 VnMyL )

B Kl (vnM;L)

_f”’oo( 16772f2 7;4 VM, L )

23



Size of the FV corrections

There exist various representations for Bessel function K, e.g.

K= [Tae )]

t2

Perform a saddle point expansion for large z

p
Ki(z) ~ 4/ ge_z for 2 — o0 Exercise: Show this

M? 7 e MrlL
- w, L — Jmw,00 1 — 244 — O( _\/iM”L)
oo = froe 1= Ttz S i gy +O

@® FV corrections are exponentially suppressed
@ As anticipated: The relevant quantity is the dimless number M, L

@® As anticipated: FV corrections of kaons and etas are even smaller than for pions
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Range of applicability

The results derived here apply only for ML > 1
so called p-regime

Do not hold for smaller values with M, <« 1

so-called €-regime _
zero-mode contribution

'

etP(z—y) 1

GL(x_y L4Zp —|—M2:M2L4+Z
p#0

Reason: The zero-mode contribution becomes large

= reordering of the perturbative expansion becomes necessary

For details see Maarten Golterman, arXiv: 0912.4042
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Final comments on FV ChPT

So far: periodic boundary conditions

@® Twisted boundary conditions ( periodic up to global symmetry transformations )
= Similar results G.Colangelo and A.Vaghi, 2016

@® Dirichlet or open boundary conditions in time
- 2
More complicated because of

I)’

O “real” boundaries for xo=0and xo=T

L = Linfvol + Log=0 + Lag=T

O the boundary terms are expected to break chiral symmetry
= new terms with new unknown LECs appear in the chiral Lagrangian

(not worked out so far ...)
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Non-zero lattice spacing corrections
Wilson ChPT



ChPT at non-zero lattice spacing

@® Very often in practice: Lattice data at non-zero lattice spacing
Desired: Apply ChPT to these results

® Not straightforward because
O the lattice breaks Lorentz resp. O(4) invariance

O most lattice fermions break chiral symmetry,
e.g.Wilson and staggered fermions

These breakings lead to modifications in the continuum ChPT results!

@® In the following: Wilson fermions (simplest case ...)

28



ChPT at non-zero lattice spacing

® Constructing ChPT for non-zero lattice spacing:
Strategy: Two-step matching to effective theories:

A
‘CLattice—QCD
o0
E Lsym = Lqcp + aly + a’Lo+ ... Symanzik effective theory
L
Levival = LonpT + 0L + CL2£2 4o Inherited: Details depend on

the Lattice Dirac operator

® ‘“Lattice ChPT” is an expansion in powers of small pion momenta, pion mass
and a small lattice spacing a

e.g. LO: O(pQ, m,a) Not universal,

different countings exist !

NLO:  O(p*,p*m,m?, p*a, ma, a®)
® Additional LECs associated to the “lattice spacing terms’ appear

29



Example: Wilson fermions

Symanzik effective theory through O(«):

Lsym = Lqgcep +acqio,,Gu,q + O(aQ) 0 = 3'[% )]
2 Y 1%

» One term (Pauli term)
(“anomalous color magnetic moment, strength ¢ , flavor independent)

1
» Breaking of chiral symmetry also allows a term —qq
a

= included in the quark mass term in Locp

Pauli term breaks chiral symmetry like a mass term

£Pauli — GRA iauuGMVQL -+ GLATZ.O'/JJVGMVQR A = ac
R,L
A —— RAL'
R L A: spurion field
= invariant if At —— LA'R' analogous to quark mass matrix

[ cp. with Lecture 2, slide 20

A —— A
“physical value™: A = A" = qc
30



Example: Wilson fermions

Additional invariant with the spurion field A : Tr[AUT + ATU]

2
- Cola] = -1 Wgocatr[UJrUT]

Leading term with one power of a
recall: euclidean space-time — sign

Form of a flavor diagonal mass term
same breaking in QCD leads to the same terms in ChPT

Wo: new LEC associated with the non-zero lattice spacing
analogous to B associated with the non-zero mass term
note:

dim Wo=3,dm B =1 = dim Woa = dim Bm, = 2

Convention: Woc = Wy since both are unknown coefficients
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Example: Wilson fermions

Higher order terms: Obtain these from the Lagrangian L4 by replacing

Lk —_— Wk, W]é

= Lolp*a,mga] = Wyptr[0,U0, UM tr[U +U'] + Wi term

~Weptr[x(U +UNtr[U + U] + W, Wy terms

2
L2a®] = —W(p? (tr[U+ UT]) + W7, Wy terms

We find 8 additional terms in the chiral Lagrangian !

32



Example: Wilson fermions

Comment on the power counting:

2 2
We count p? ~ mq because of p* = M., o< my

An analogous argument does not hold for the a contribution
The lattice spacing a can be changed independently of p2? and mq

Different countings exist depending on the relative size of m4 and a

mq~a  GSM regime — LO: O(p?, mq, a)

generically small quark masses NLO: O(p?, p2mq, mq2, p2a, mya, a2)

mq ~ a?>  LCE regime — not here ...
large cut-off effects
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Symanzik effective theory through O(a?):
Sheikholeslami,Wohlert 1985

Some examples:

® quark bilinears

® 4-quark operators

All these operators need to be mapped to ChPT ...

|8 fermion operators ( dim 6 )

Example: Wilson fermions at O(a)

MANY more terms!

+ gluonic ones

056) = g(VuDu)?)q

6 — a
056) — (C],y,uczﬂcolorq)2

chiral symmetry
preserving

34

026) =qMyD,D,q

05" = (qq)*

chiral symmetry
breaking

+ 6 more terms

+ 8 more terms



Example: Wilson fermions at O(a)

Chiral symmetry preserving operators:

do not change the symmetry properties of continuum QCD
= map to the same continuum chiral Lagrangian
but: the LECs differ and depend on a2

f —> fla®=f+ fla* + ... — NNLO terms of O(p2a?)

L, —» Lk(aQ) = L + L;fa2 + ... = N3LO terms of O(p*a?)

Can be ignored if working at NLO only !
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Example: Wilson fermions at O(a)

Chiral symmetry breaking operators:

Introduce spurion fields for each term and use to construct invariants in ChPT
= additional terms in the chiral Lagrangian at O(a?)
but: no new terms, only the same ones we already found using A%, AAT, ...
OB, Rupak, Shoresh 2004

Consequence: Effectively only the LECs W, W7, W¢ change
, 2 2 3 2
Wip? (U +U1) " —— W2 (U +UT]) + 3 W0 (wefU + UT))

J

= (W§ + Z We.;) p° (tr[U + UT])2

J

Upshot: The |8 operators at O(a?) in the Symanzik effective action do not
qualitatively change the chiral Lagrangian up to NLO
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Example: 7z scattering in WChPT

Results for scattering amplitude Tfor 71 (py) 7 (p2) — 7 (p}) 7T (ph)
SU(2) ChPT, my= ma= m, GSM regime

= Consider threshold value,ie.for s =4MZ? t=u =0

LO:

NLO:

QM2
Tltnr = — f20 continuum result, no O(a) correction !  cp.Lecture 2, slide 28
The O(a) term is contained in the pion mass
2M?2 4 Mg Mg p?
Tlopy = — 0 [1 1 } —k 32(2W) + W,
o =25 ([ S ) W)
k’l :k1<W4,...,W8) p:2W()CL

» We recover the continuum results for a = 0

» Note: Chiral and continuum limit do not commute !
You enter the LCE regime first ...
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More applications

® More applications

O twisted mass QCD » twisted mass ChPT
O staggered QCD » staggered ChPT
O mixed action QCD » mixed action ChPT

different lattice fermions
for sea and valence quarks

@® Introduction including many references to original papers:

M. Golterman, Applications of chiral perturbation theory to lattice QCD
Les Houches lecture notes, arXiv:0912.4042 [hep-lat]
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Lorentz or O(4) symmetry breaking



O(4) breaking

Symanzik effective theory through O(a?):
Sheikholeslami,Wohlert 1985

04(16) = VDD Dyq

=qpVuDuDuDuqr + 97,0, D0 D,qr

» breaks O(4) symmetry

» preserves chiral symmetries

also present for chiral lattice fermions (Ginsparg-Wilson, Domain-wall)

Exercise: Map this term to ChPT
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Multi-pion state contamination



Pion pole dominance revisited

i 1 1 2 PuPv
We saw (Lecture 2, slide 35) <0|TAM ()AL (y)|0) = f OV +

70

TA4 A4 _ 2 pﬂp’/
OT A3 @) AL W0) = 12 Py

@ The pion pole is the dominant part (lowest lying pole)
reproduced in ChPT

@® ... stands for poles of non-GB particles

@® There exist also multi-pion contributions
e.g. 3-particle states: st or Kt

These are contained in ChPT !
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Example: pion correlator

0 1G(JPC) =
o
We have omitted some results that have been superseded by later
experiments. The omitted results may be found in our 1988 edition
Physics Letters B204 1 (1988).

Same

0
m° MASS quantum numbers

VALUE (MeV) DOCUMENT ID
134.9768+0.0005 OUR FIT Error includes scale factor of 1.1.

(1300 0 (o)

m(1300) MASS

VALUE (MeV) EVTS DOCUMENT ID TECN  COMMENT
13004100 OUR ESTIMATE

37t state with all pions at rest:  Es; =420 MeV « 1300 MeV

Jitr states may have a larger impact than 77(1300)
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Multi-pion states in ChPT

Consider QCD in a finite spatial volume V=13 = discrete spatial momenta
= isolated poles in the
sprectral decomposition

C i (t) = / A3z (AL(Z, 1) A%(0,0))

= Cp e~ Mt C1 e~ (Mr+2Me)t

Feynman
diagrams: —a + + + +

_ [PMk ca_ 3 M2
92 co 128(fL)*(M,L)? (Mg + M,)?

Co

Well defined (finite) expression

44



Multi-pion states in ChPT

@® Relevance in practice: Excited-state contamination in calculating Mx and fx
typically extracted from fits of a single exponential (co part) to lattice data

® Not really an issue for the pion and kaon correlation functions

O Euclidean time 7 can be chosen large enough such that the excited state
contribution is negligible, e.g. K7t contribution is O(104) for t = 1 fm

® However: Much larger contribution in nucleon obeservables like nucleon form factors

= dominant excited state contribution are 2-particle N states
For a recent review see OB, arXiv:1708.00380 [hep-lat]
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Exercises

For possible exercises see

® slide 24
® slide 40
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