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Chapter 1

Relation between scattering amplitude
and eigen-energies on the lattice

This chapter addresses the relation between the scattering amplitude for two-hadron
scattering and eigen-energies obtained from a lattice simulation. It is based on the Lüscher
formalism for the scattering of particles [1, 2, 3]. Rigorous derivation for the scattering of
two particles without spin can be found in [4], [5]. The scattering of particles with spin
is considered in the paper by Briceno [6].

We derive how the scattering amplitude for two-hadron scattering is related to eigen-
energies obtained from a lattice simulation. These eigen-energies are obtained using
two-hadron operators derived in paper ([7]). The scattering amplitude M (1.17)

S(E) = e2i�l(E) , M(E) / e2i�l(E) � 1 (1.1)

is related to the scattering phase shift �l(E) in the simplest case when a single partial
wave l is present. The scattering amplitude is related to possible resonances or bound
states that appear in a given channel. The energy-dependence of a phase shift is

cot �l(E) =
M2 � E2

E �(E)
(1.2)

for a simple Breit-Wigner type resonance with mass M and with � in a given channel.
The relation for determination of the scattering phase shift � on the lattice will be derived
in this chapter.

The relation between the scattering amplitude and eigen-energies E, which will be
derived below, is given by

det[1 + i const. M(E) G(E)] = 0, (1.3)

where constant const. = 1
2 for identical particles and const. = 1 otherwise. We are

interested in the scattering of non-identical particles, therefore const. = 1 from this point
forward. The infinite-volume scattering amplitude M (1.17) is a function of E. G is a
known kinematical matrix, which is also a function of energy E and the lattice size L.
The equation (1.3) is satisfied only for specific energies E, which correspond to eigen-
energies obtained from a lattice simulation. This renders M(E) for discrete values of E
since G(E) is a known function.

Expressions for the kinematical matrix G and scattering amplitude M can also be
found in the literature ([4], [5],[8], [6],... ). Kinematical functions G, scattering amplitude
M and relations between will be derived below.
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Chapter 1. Relation between scattering amplitude and
eigen-energies on the lattice

1.1 Scattering of two hadron states without spin on the
lattice

Operators O in correlation function C(E) 1.4 should have a good overlap with states we
are investigating. In further calculations, E and Ptot are total energy and momentum.
We will focus on example with

P tot = 0, P = (E,P tot) = (E,0)

as we are interested only in scatterings with zero total momentum and we also derived
this kind of operators in the paper ([7])

++" # = % % %

&&& & & &

' '( ''( '(		' +	…

Figure 1.1: Diagram of expansion for correlation function C. Dashed boxes are integral
over the momentum of fully dressed propagator G (eq. 1.6).

The correlator C(E) can be expressed in terms of Bethe-Salpeter kernel K as indicated
in Fig. 1.1

C(E) =

Z
d4xei(�P totx+Ex0) < 0|O(x)O†(0)|0 >

P=0���! (1.4)

C(E) = B G B† +B G K G B† + ... (1.5)

K is a sum of all amputated two particle irreducible scattering diagrams in s�channel.
The exact form of operators O is not essential for this discussion. G is an integral of a
product of two fully dressed propagators over the momentum

G(E) =
1

L3

X

k

Z
dk0
2⇡

[z(k)�(k)][z(k0)�(k0)] k0 = P � k . (1.6)

Here

[z(k)�(k)] =

Z
d4xeikx h�(x)�(0)i , �(k) =

i

k2 �m2 + i✏
(1.7)

and z is the dressing function, which is connected with the field-strenght renormalization
constant Z as

z(k) = Z (scalars), z(k) = Z
X

s

us(k)ūs(k) (fermions),

z(k) = Z
X

r

✏r(k)✏⇤r(k) (vectors) . (1.8)

Field renormalization stregnth Z is a residue of the single particle pole in the two-point
funcion.
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1.1. Scattering of two hadron states without spin on the lattice

Let us first discuss the renormalized scattering amplitude M and how it is affected
by the field renormalization Z. The relation between the renormalized (�) and bare (�B)
n-point function is �(n) = (

p
Z)n�(n)

B . We consider 2 ! 2 scattering, where the relation

�4 = (
p
Z)4�4

B M / �4 (1.9)

directly follows from the LSZ reduction formula (chapter 7.2 of [9])
Y

i=1,2

Z
d4xie

ipixi
Y

j=1,2

Z
d4yje

�ikjyj
D
0|H1(x1)H2(x2)H

†
1(y1)H

†
2(y2)|0

E
= (1.10)

⇠
p0i!Epi
k0j!Ekj

(
Y

i=1,2

p
Zi

p2i �m2 + i✏
)(
Y

j=1,2

p
Zi

k2
j �m2 + i✏

) hp1p2|S|k1k2i .

One can employ fully dressed fields in (1.9) which are renormalized or not. If one works
with renormalized fields, then their Z = 1 in (1.6) and M in figure 1.2 already corresponds
to the renomalized scattering amplitude. If one employs non-renormalized fields, then
the renormalized 2 ! 2 scattering amplitude is

M = (
p
Z)4MB = Z2MB = ZKZ + ....

in Fig. 1.2. Indeed, K in Fig. 1.2 is multipled by Z2: one Z is present in G on the left
and one Z in the G on the right. Therefore Z�factors present in G (1.6) are responsible
for rendering the renormalized scattering amplitude M .

!= " + " " +	…

Figure 1.2: Any number of kernels K are packed into scattering amplitude M . Scattering
amplitude is a function of angular momentum l. If particles carry spin than M is a
function of total angular momentum J and spin S.

Now let us turn to the function G, which describes product of two propagators (1.7)

G(E) =
1

L3

X

k

Z
dk0
2⇡

z(k)�(k)�(k0)z(k0) , k0 = P � k, P = (E,0). (1.11)

Two hadron loop G is divided into the infinite volume contribution G1, while the reminder
represents the finite volume correction GFV

G (E) =
1

L3

X

k

Z
dk0
2⇡

z (k)
1

(k2 �m2 + i✏) (k02 �m2 + i✏)
z (k0) =

=

Z
d4k

(2⇡)4
z (k)� (k)� (k0) z (k0) +

Z
d⌦d⌦0z (q)F (q, q0) z (q0) = (1.12)

=G1 (E) +GFV (E)

Momenta q and q0 are size of the on-shell momenta q = |q|, q0 = |q|0, where E = E1+E2 =p
q2 +m2

1 +
p

q2 +m2
2. Kinematical properties originating from the propagator � and

13



Chapter 1. Relation between scattering amplitude and
eigen-energies on the lattice

= +
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Figure 1.3: Division of two hadron loop G into the infinite volume contribution and finite
volume effect in kinematical matrix G.

finite volume dependence of GFV are packed in the new function F . F is a function of
momentum q and q01, size of the lattice L and the particle masses. The identity 1.12
is shown in figure 1.3. GFV (E) containing finite volume corrections can be conveniently
evaluated with the use of Cauchy residue theorem and Poisson summation formula as
shown in appendix A.1 and later on in this section.

The correlator in Eq. (1.4) and Fig. 1.1 contains G, which is a sum of two terms in
equation (1.12) and is graphically presented in Fig. 1.3. We will consider

CFV (E) = C(E)� C1(E) (1.13)

where C1(E) contains no finite volume insertion F (Fig. 1.4).

!" # = ++ & & &' '( ''( '(		' +	…

Figure 1.4: Graphical representation of C1(E), which is obtained by reorganization of
terms after insertions of G in Fig. 1.1 are substituted by decomposition shown in Fig.
1.3.

One can show based on Figs. 1.1, 1.3 and 1.5 that CFV can be expressed as a
combination of new functions A,A0,M and G (Fig.1.6). Fig. 1.5 defines these new
variables A0 and A, which are related to external operator and will not play essential role
in the following.

A′= "		$ " "$+ +	…

'= $(" " " $(+ +	…

Figure 1.5: Decomposition presented in 1.3 is used in definition of new finite volume
variables A0 and A which are here graphically presented. Operators B or B0 and all
neighboring kernels K with infinite contributions are packed together into variables A
and A0.

1Four vector k k2 = !2
k � m2 can be either written in carthesian coordinates k = (k0,k) =

(k0, (kx, ky, kz)) k = (!k,k) or in spherical coordinates k = (k0, (|k|,#,')) = (k0, (|k|,⌦)).
14



1.1. Scattering of two hadron states without spin on the lattice

It is convenient to expand new variables defined in Fig. 1.5, Fig. 1.2 and F in terms
of spherical harmonics

A(q) ⌘
p
4⇡
X

l2,ml2

Al2,ml2
(|q|)Yl2,ml2

(⌦)

A0(q) ⌘
p
4⇡

X

l1,ml1

A0
l1,ml1

(|q|)Y ⇤
l1,ml1

(⌦)

M(q, q0) =
X

l1,m1;l2,m2

4⇡Ml1,m1;l2,m2Yl1,m1(|q|)(⌦)Y ⇤
l2,m2

(⌦0)

F(q, q0) =
X

l1,m1;l2,m2

� 1

4⇡
Gl1,m1;l2,m2(|q|)Yl1,m1(⌦)Y

⇤
l2,m2

(⌦0). (1.14)

CFV for two partial waves l1 and l2 can be now rewritten in terms of geometrical
series 2

CFV (E) = �A0GA+A0Gi MGA+ ... =

= �A0G 1

1 + i MGA. (1.15)

of kinematical factor G, scattering amplitude M and operators A and A0, which are all
defined above in equation (1.14). Graphical representation of CFV defined in (1.15) is
shown on Figure 1.6. Each vertical line on figure 1.6 represents one insertion of kine-

!"#(%) = ++ ℳ ℳ ℳ

* * *

+’ ++’ +	…

**

+’

*

+ +

Figure 1.6: Diagramatical representation of finite volume contributions to corelation
function CFV with new variables G,M, A and A0.

matical factor F which is connected with kinematical function G as written in equation
(1.14). The same result would be obtained if variables A,A0,M and F would be used
instead of new ones because the identity

X

l1,m1

Yl1,m1(⌦)Y
⇤
l1,m1

(⌦0) = � (⌦� ⌦0)

would occur between each pair of variables.
Poles of CFV (E) (1.15), originating from the insertions of the function FG (Fig. 1.6),

are equal to those of C(E), because the infinite volume contribution C1

The poles in the finite volume corrections of correlation function CFV (E) (1.15) cor-
respond to eigen-energies on the finite lattice. In order to find the poles of CFV (1.15)
one has to solve the following equation

det [1 + iM(E)G(E)] = 0, (1.16)
2(1± x)�m = 1⌥mx+ m(m+1)

2! x2 ⌥ m(m+1)(m+2)
3! x3 + ...
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Chapter 1. Relation between scattering amplitude and
eigen-energies on the lattice

which represents one form of the Lüscher’s equation. The solutions of the Lüscher’s
equation occur for certain discrete energies E, which correspond to eigenenergies on the
finite lattice. They depend on the scattering amplitude M for partial wave l

Ml1,m1;l2,m2(E) = Ml1(E) �l1l2�m1m2 , Ml1(E) =
8⇡E

|q|
e2i�l1 (q) � 1

2i
, (1.17)

Here q ⌘ |q| is the magnitude of the on-shell spatial hadron momentum in cmf-frame
corresponding to the energy E

E = E1 + E2 =
q
q2 +m2

1 +
q
q2 +m2

2 , q ⌘ |q| . (1.18)

The quantization condition (1.16) depends also on the kinematical factor G. G is obtained
from GFV (1.12). The later is equal to GFV

1 (q2), as shown in the Appendix A.2,

GFV (E) = GFV
1 (q2), GFV

1 (q2) ⌘ �
 
qf00(q)

8⇡E
� i

2E

1X

l=0

lX

m=�l

flm(q)clm(q
2)

!
(1.19)

where
f(k) = z(k) z(k) (1.20)

is the product of dressing functions for both hadrons, q is an (dimensionfull) on-shell
momentum (1.18) and clm is defined below (1.21). The above relation reduces GFV to
GFV

1 , where the later is more practical for actual numerical evaluation. The sum over
four-momentum k in GFV (1.12) is reduced to a function GFV

1 (q2) at an on-shell value of
the momentum q that is related to the energy E as given in (1.18). The clm from (1.19)
is defined in terms of the well-known Lüscher’s zeta functions Zlm

clm(|q|2) ⌘ �
p
4⇡

L3

✓
2⇡

L

◆l�2

Zlm


1; (

|q|L
2⇡

)2
�

, Zlm

⇥
s, q̃2

⇤
⌘
X

n2N3

|n|l Ylm(n)

(n2 � q̃2)s
(1.21)

Given the expression for the finite volume corrections to the loop function GFV (1.19),
it is straightforward to determine G, which is related to GFV via (1.12,1.14). In the
Appendix A.2 we show that G that corresponds to GFV above is

Gl1m1;l2m2(q) =
q

8⇡E
(�l1,l2�m1,m2 + iGFV

l1m1;l2m2
)(q)

GFV
l1m1;l2m2

(q) = �
1X

l=0

lX

m=�l

(4⇡)
3
2

ql+1
clm(q

2)

Z
d⌦Y ⇤

l1m2
(⌦)Y ⇤

lm(⌦)Yl2m2(⌦) (1.22)

In practice, Appendix A.2 shows that when G (1.22) is inserted to the expression for GFV

(1.12,1.14) then one indeed gets (1.19).
In conclusion, the final relation between eigen-energies and scattering matrix is (1.16),

where the scattering matrix M is defined in (1.17) and G is a know kinematical func-
tion given in (1.22). Examples of the Lüscher equation will be shown in section 1.2 for
scattering without spin and in section 1.3 for scattering with spin.
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1.2. Simplified Lüscher equation for spinless scattering

1.2 Simplified Lüscher equation for spinless scattering
Poles of CFV given in 1.15 are determined by det(1 + iMG) = 0 ((1.16).

These poles correspond to the energy spectrum in the observed channel. G inherits
its poles from function clm defined in equation 1.21. For simplicity of following derivation
one can define new matrix X

X = 1 + iMG. (1.23)
which equals

Xl1,m1;l2,m2 = (1 + i MG)l1,m1;l2,m2 = (1.24)

= �l1,l2�m1,m2 +
8⇡E

|q| Gl1,m1;l2,m2(e
2i�l1 (|q|) � 1),

where �l1(|q|) is phase shift for partial wave l1 and �l1,l2 , �m1,m2 is Kronecker delta function
for l1,2 and m1,2 respectively.

Let us consider scattering where one has contributions of two partial waves l1 and l2
present in channel under consideration 3

detX =0

Xl1l1Xl2l2 � Xl1l2Xl2l1 =0

(�m1,m2 +
8⇡E

|q| Gl1,m1;l1,m2(e
2i�l1 (|q|) � 1))(�m1,m2 +

8⇡E

|q| Gl2,m1;l2,m2(e
2i�l2 (q) � 1))�

(1.25)

�
✓
8⇡E

|q|

◆2

G2
l1,m1;l2,m2

(e2i�l1 (q) � 1)(e2i�l2 (q) � 1) =0.

If both partial waves are non-negligible and if Gl1,m1;l2,m2 6= 0, one has to employ the
above Lüscher’s equation 1.25. It represents one equation for two unknowns �l1(E) and
�l2(E) at given energy E.

In the analysis of our results, we will employ a simplifying approximation, where only
one partial wave l1 is dominant in a given channel, while others are negligible. In this
case �l2(E) = 0 and e2i�l2 (|q|) � 1 = 0, so 1.25 simplifies to

�m1,m2 +
8⇡E

|q| Gl1,m1;l1,m1(e
2i�l1 (|q|) � 1) = 0. (1.26)

Scattering in partial wave with l1 therefore gives the equation 1.26 and leads to

1� e2i�l1 (|q|) =

✓
8⇡E

|q| Gl1,m1;l1,m1

◆�1

1 + i cot �l1(|q|)
1 + cot2 �l1(|q|)

=
1 + i 4⇡|q|c00(|q|

2)

1 +
⇣

4⇡
|q|c00(|q|2)

⌘2 . (1.27)

One can read from equation 1.27 that Lüscher equation is now

cot (�l1(|q|)) =
4⇡

|q|c00(|q|
2) =

2Z00

h
1;
�
|q| L2⇡

�2i

p
⇡L|q|

, (1.28)

with c00(|q|2) and Z00 defined in 1.21.
3For example partial waves with l1 = 1 and l2 = 3, where G1,m1;3,m2 is indeed not zero.
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Chapter 1. Relation between scattering amplitude and
eigen-energies on the lattice

1.3 Generalization for scattering with spin
Finally the generalization of equations derived above for scattering of particles with spin
should be performed. The original derivation for scattering of particles with arbitrary
spin can be found in [6]. This paper is a generalization of the previous work on finding
a finite volume spectrum by several authors ([4], [10],[11], [12],[13],... ). For scattering
of two particles with total spin S more than one partial wave l can contribute at given
total angular momentum J (J = l�S) even in continuum. For example in scattering of
vector meson J/ with spin S1 = 1 and proton with spin S2 = 1

2 in channel with total
spin S = 3

2 and total angular momentum JP = 3
2

�, dinamical mixing of partial waves
with l = 0 and l = 2 occurs. The scattering matrix S for this example is equal to

S = M+ 1 =

2

4
S
h
J/ N

⇣
4S 3

2

⌘
|J/ N

⇣
4S 3

2

⌘i
S
h
J/ N

⇣
4S 3

2

⌘
|J/ N

⇣
4D 3

2

⌘i

S
h
J/ N

⇣
4D 3

2

⌘
|J/ N

⇣
4S 3

2

⌘i
S
h
J/ N

⇣
4D 3

2

⌘
|J/ N

⇣
4D 3

2

⌘i

3

5 ,

(1.29)
here states are noted in the form H1H2

�
2S+1lJ

�
on the source and the sink.

As an example, we will predict the eigen-energies of NJ/ based on the experimental
masses of Pc pentaquark resonances in one-channel approximation. We will take addi-
tional approximation where only one partial wave is dominant in each channel where
pentakquark Pc was observed. So only one phase shift �l,S would be non zero and con-
tribute to the Lüscher equation.

The relation between eigen-energies and scattering matrix, i.e. the quantization con-
dition, (1.3)

det [1 + iM(E)G(E)] = 0

is now a function of spin S, orbital angular momentum l and total angular momentum J

det

"
(1 + iM(E)G(E))J1,mJ1 ;l1,S1

J2,mJ2 ;l2,S2

#
= 0. (1.30)

Scattering amplitude M is a function of orbital angular momentum l, total spin S, and
angular momentum J . Matrix M is diagonal in angular momentum J , for different
combinations of l and S is in general not diagonal(1.29).

As an example we will predict eigen-energies of NJ/ based on the experimental
masses of Pc pentaquark in one channel approximation. We will take additional approx-
imation where only one partial wave l is dominant in each channel (only one diagonal
element of S 1.29) is non-zero) and only one phase shift �l1,S1 would be non zero and
contributes to the Lüscher equation

SJmJ l1S1
JmJ l2S2

= �S1S2�l1l2S
⇥
J/ N

�
2S1+1(l1)J

�
|J/ N

�
2S2+1(l2)J

�⇤
= e2i�(l1,S1) (1.31)

SJmJ l1S1
JmJ l2S2

= �S1S2�l1l2

✓
MJmJ l1S1

JmJ l2S2

+ 1

◆
.

Kinematical matrix G is similar to M a function of total angular momentum J , orbital
angular momentum l and spin S. It is diagonal in spin S, but it is not diagonal in J .
So, scattering amplitude M and kinematical function G in quantized condition (1.30)
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1.3. Generalization for scattering with spin

depend on total spin S and total angular momentum J in addition to the orbital angular
momentum l, which is the only independent variable in calculation of Lüscher equation
for scattering of partices without spin (Eq. 1.17 , 1.22 and 1.28).

1.3.1 Transformation from variables for scattering without spin
to scattering with spin

Functions used in quantization condition in previous chapter Ml1,ml1
;l2,ml2

and Gl1,ml1
;l2,ml2

are dependent on l1,2 and its third component ml1,2 . No explicit dependence on spin S
was explicitly written for S = 0. Their dependence on spin origins from factor z (1.7)
contained in the particle propagator. The scattering amplitude M (1.29) is diagonal
for S = 0 (in that case l = J and scattering matrix is always diagonal in J). The
kinematical function G is a function of orbital angular momentum l1,m1; l2,m2 for S = 0
and we expand it in terms of total angular momentum J and spin S for S 6= 0.

There is a simple transformation for variables in scattering of particles without spin
to those for scattering of particles with spin via Clebsch-Gordan coefficients

FJ1,mJ1 ;l1,S1

J2,mJ2 ;l2,S2

(|q|) =
X

ml1
,mS1

ml2
,mS2

C
J1,mJ1
l1,ml1

;S1,mS1
C

J2,mJ2
l2,ml2

;S2,mS2
hl2ml2 ;S2mS2 |F (|q|) |l1ml1 ;S1mS1i ,

(1.32)
hl2ml2 ;S2mS2 |F (|q|) |l1ml1 ;S1mS1i =Fl1ml1

;S1mS1
l2ml2

;S2mS2

.

Mathematical derivation of 1.32 for some arbitrary function F which is a function of
orbital angular momentum l and on shell momentum q to a function of total angular
momentum J , orbital angular momentum l and spin S can be found in appendix A.3.
Similar transition expression can be found for scattering of nucleon in pion in paper
[14],[8],[10],....

We use previous relation 1.32 (or more explicitly A.30) in (A.29) ) and after short
calculation one gets kinematical function G as a function of the on shell momentum |q|
(1.18)

GJ1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|) = |q|
8⇡E

�S1,S2

"
�l1l2�J1,J2�mJ1 ,mJ2

+ iGFV
J1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|)
#
, (1.33)

where finite volume correction are

GFV
J1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|) =
X

ml1
,mS

ml2

C
J1mJ1
l1ml1

,S1mS
C

J2mJ2
l2ml2

,S2mS
GFV
l1ml1
l2ml2

(|q|)

GFV
l1,S1,J1,mJ1
l2,S2,J2,mJ2

(|q|) =�
X

ml1
,mS

ml2

C
J1mJ1
l1ml1

,S1mS
C

J2mJ2
l2ml2

,S2mS

X

l,m

(4⇡)
3
2

|q|l+1
clm(|q|2)

Z
d⌦Y ⇤

l1,ml1
(⌦)Y ⇤

l,m(⌦)Yl2,ml2
(⌦).

Kinematical function G is diagonal only in spin S1. In Lüscher equation (1.3,1.30) kine-
matical function G and scattering amplitude M (1.29) are used.
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Chapter 1. Relation between scattering amplitude and
eigen-energies on the lattice

Lüscher equation in case when one channel (l, S) dominates

The previous subsection treated scattering scattering of particles with spin in complete
generality. Here we consider an aproximation where only one partial wave l and one spin
S contributes to the scattering amplitude M and therefore all off-diagonal elements in
scattering matrix (1.29) are equal to 0

MJ,mJ ;l1,S1
J,mJ ;l2,S2

(|q|) = �l1,l2 �S1,S2 MJ,mJ ,l1,S1
J,mJ ,l1,S1

(|q|), MJ,mJ ,l1,S1
J,mJ ,l1,S1

(|q|) = 16⇡E

|q|
e2i�(l1,S1) � 1

2i
.

(1.34)
where l1 = l2, S1 = S2 and J1 = J2 . Phase shift �(l,S) then depends on the orbital angular
momentum l and on the spin S. Dependence on spin was not explicitly written because
for S = 0 scattering matrix is diagonal in orbital angular momentum l. For S = 0 angular
momentum J is equal to orbital angular momentum l. Generalization for scattering with
spin (S 6= 0) is made in (1.29).

We insert this simplified scattering matrix M (1.34) into the general quantization
condition (1.30). For derivation of the Lüscher equation one needs also kinematical
function G (A.29), which in general remains off-diagonal in J . For simplicity, new variable
X is introduced in the quantization condition (1.30) 4

X (|q|) = 1 + iM(|q|)G(|q|), XJ1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|) = (1 + iM(|q|)G)J1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|).

(1.35)
With use of previously derived quantities M and G (Eq. 1.34 and 1.33) one gets general
matrix element for new already simplified function X

XJ1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|) = �J1J2�mJ1mJ2
�l1l2�S1S2 + i�S1S2Ml1,S1(|q|)GJ1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(|q|). (1.36)

When only partial wave (l1, S1) dominates and other are negligible, then Ml1,S1 is the
only non-zero aplitude. The quantization condition det(X ) = 0 translates to

 
e2i�l1,S1 + i

�
e2i�l1,S1 � 1

�
GFV
J1,mJ1 ,l1,S1

J1,mJ1 ,l1,S1

(|q|)
!

= 0. (1.37)

Simplified quantization condition (1.37) gives Lüscher equation for scattering of two par-
ticles with spin

cot �(l=l1,S=S1) =
2Z0,0

⇣
1;
�
|q| L2⇡

�2⌘

p
⇡L|q|

. (1.38)

Expression for phase shift (1.38) for scattering with spin is of same form as the one
for scattering with S = 0 (1.28).

1.4 Predictions of eigen-energies in charmed pentaquark
P+
c channel

In 2015, two peaks in proton-J/ invariant mass with minimal flavor structure of uudcc̄
were observed by LHCb ([15],[16]). In 2019 same collaboration anounced ([17]) that upper

4Similar proceedure was performed for spinless case in section 1.2
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Appendix A

Derivations related to the Lüscher
equation

A.1 Division of two hadron loop into the infinite and
finite volume contribution

In general loop summation is of the form

G(E) =
1

L3

X

k

Z
dk0
2⇡

�f(k)

(k2 �m2 + i✏)((P � k)2 �m2 + i✏)
, k = (k0,k) (A.1)

where P is four-vector. Function f(k0,k) is defined as f(k) = z(k)z(k0) = z(k)z(P � k),
where dressing function z(k) is listed in main text (1.8). For us P tot = 0 (P = (E, 0)),
k = (k0,k) and we have particles with different masses m1,m2 therefore G is rewritten

G(E) =
1

L3

X

k

Z
dk0
2⇡

�f(k)

(k2 �m2
1 + i✏)((P � k)2 �m2

2 + i✏)
=

=
1

L3

X

k

Z
dk0
2⇡

�f(k0,k)

(k2
0 � k2 �m2

1)((E � k0)2 � k2 �m2
2)
. (A.2)

One uses Cauchy residue theorem and gets decomposition of G to

G(E) = � i

L3

X

k

✓
f(!1,k)

2!1((E � !1)2 � !2
2)

+
f(!2,k)

2!2((E + !2)2 � !2
1)

◆
, (A.3)

with new variables !2
1 = k2+m2

1 and !2
2 = k2+m2

2. One is interested in the singularities
which carry informations on finite volume corrections and can be found in the first term
of decomposition given in A.3.

G1(E) = � i

L3

X

k

f(k)

2!1((E � !1)2 � !2
2)

(A.4)

In term of interest G1 one uses definition of E = E1 + E2 with Ei =
p

q2 +m2
i ,

!2
1 = k2+m2

1 and !2
2 = k2+m2

2. Function f is from here forward written as f(k) instead
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Appendix A. Derivations related to the Lüscher equation

of f(!i,k) as technically ! is a function of k and therefore only independent variable in
f is k. With use of definitions for energy E, !1 and !2 one can rewrite G1 in following
form

G1(q
2) = � 1

L3

i

2E

X

k

f(k)

q2 � k2

E1 + !1

2!1
. (A.5)

For simplicity we define new function

h(k) = � i

2E
f(k)

E1 + !1

2!1
, (A.6)

h(q) = � i

2E
f(q), because

E1 + !1

2!1

����
k=q

= 1

with non singular fourier transform h̃(k). Function h(k) can be expanded in terms of
spherical harmonics

h(k) =
1X

l=0

lX

m=�l

hlm(k)k
l
p
4⇡Ylm(#,'), k = (k = |k|,#,'). (A.7)

With this definition, the function G1 (equation A.5) can be written as

G1(q
2) =

1

L3

X

k

h(k)

q2 � k2
, (A.8)

and it can be expanded in lm terms as

G1(q
2) =

X

l,m

1

L3

X

k

hlm(k)

q2 � k2
kl
p
4⇡Ylm(#,'). (A.9)

Poisson summation formula will be used for the evaluation of G1(q).
Poisson summation formula for an arbitrary function g(k) reads

1

L3

X

k

g(k) =

Z
d3k

(2⇡)3
g(k) +

X

l 6=0

Z
d3k

(2⇡)3
eiL l·k g(k), (A.10)

where k = 2⇡
L n with n = (n1, n2, n3), l = (l1, l2, l3) and ni, li 2 N. In the following,

we consider functions g whose Fourier transforms, g̃(r) , are non-singular, and are either
contained in a finite spatial region or decrease exponentially as |r| ! 1. If we apply the
Poisson summation formula to such functions, the terms with l 6= 0 on the right-hand-side
decrease at least exponentially as the box size is sent to infinity, so that

1

L3

X

k

g(k) =

Z
d3k

(2⇡)3
g(k), (A.11)

up to corrections that are at most exponentially small.
Eq. (A.11) should be applied to (A.9), where g(k) is substituted with hlm(k)

q2�k2 k
lYlm(#,').

The singularity at k2 = q2 forbides one to use equation A.11 directly on G1,lm (A.9). Kim
et.al [4] apply a trick where they subtract a function, h(q)e↵(q2�k2), which cancels that
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A.1. Division of two hadron loop into the infinite and finite
volume contribution

pole from summand in equation A.11. With this trick one can interchange sum with in-
tegral over k. Exponential factor e↵(q2�k2) with ↵ > 0 takes care that the subtraction
does not introduce ultraviolet singularities. G1 now reads

G1(q
2) =

X

l,m

1

L3

X

k

hlm(k)� hlm(q)e↵(q
2�k2

)

q2 � k2
kl
p
4⇡Ylm(#,')+ (A.12)

+
X

l,m

1

L3

X

k

hlm(q)e↵(q
2�k2

)

q2 � k2
kl
p
4⇡Ylm(#,') =

=
X

l,m

Z
d3k

(2⇡)3
hlm(k)� hlm(q)e↵(q

2�k2
)

q2 � k2
kl
p
4⇡Ylm(#,')+

+
X

l,m

1

L3

X

k

hlm(q)e↵(q
2�k2

)

q2 � k2
kl
p
4⇡Ylm(#,') =

=
X

l,m

Z
d3k

(2⇡)3
hlm(k)

q2 � k2
kl
p
4⇡Ylm(#,')�

Z
d3k

(2⇡)3
hlm(q)e↵(q

2�k2
)

q2 � k2
kl
p
4⇡Ylm(#,')+

+
X

l,m

1

L3

X

k

hlm(q)e↵(q
2�k2

)

q2 � k2
kl
p
4⇡Ylm(#,').

New function clm(q2), defined as

clm(q
2) =

1

L3

X

k

e↵(q
2�k2)

q2 � k2
kl
p
4⇡Ylm(#,�) (A.13)

c00(q
2) =

1

L3

X

k

e↵(q
2�k2)

q2 � k2
�P

Z
d3k

(2⇡)3
e↵(q

2�k2)

q2 � k2
.

Contributions of the infinite volume

G1
1 (q2) = � i

2E

Z
d3k

(2⇡)3
f(k)

q2 � k2 + i✏

E1 + !1

2!1
(A.14)

With use of new functions A.13, A.14 and definitions for h, Ei and !i (A.6) G1 is
rewritten into two parts

G1(q
2) = G1

1 (q2)�
 

i

2E

1X

l=0

lX

m=�l

Z
d3k

(2⇡)3
flm(q)e↵(q

2�k2
)

q2 � k2
kl
p
4⇡Ylm(#,')

� i

2E

1X

l=0

lX

m=�l

flm(q)clm(q
2)

!
=

= G1
1 (q2)�

 
q f00(q)

8⇡E
� i

2E

1X

l=0

lX

m=�l

flm(q)clm(q
2)

!
=

= G1
1 (q2) +GFV

1 (q2). (A.15)
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Appendix A. Derivations related to the Lüscher equation

Finite volume effects are packed in the function GFV
1

GFV
1 (q2) = �

 
qf00(q)

8⇡E
� i

2E

1X

l=0

lX

m=�l

flm(q)clm(q
2)

!
. (A.16)

It is independent of particle masses and is equal to GFV derived in equation 1.12. From
equality of functions in 1.12 and A.16 one can determine kinematical function G needed
for determination of Lüscher equation.

In literature different form than one given in A.13 of function clm(q) is more commonly
used

clm(q
2) = �

p
4⇡

L3

✓
2⇡

L

◆l�2

Zlm

 
1;

✓
qL

2⇡

◆2
!

with

Zlm

�
s; q̃2

�
=
X

n

ñl

(ñ2 � q̃2)s
Ylm(ñ), q̃ =

qL

2⇡
, (A.17)

corrections to equation above, indicate q̃ = qL
2⇡ is dimensionless.

Definition for clm in A.17 is equal to one in A.13 to term which vanish exponen-
tially with lattice size L. In our approximation these two expressions A.17 and A.13
are equivalent and can be interchange freely. We note that Zlm is finite for s = 1 when
(l,m) 6= (0, 0) but it is infinite for (l,m) = (0, 0). This can be easily seen if the sum
is rewritten in terms of the integral for large n and this integral is zero for l > 0 due
to rotational symmetry. One has to use Z00(s, q̃2), which is analytically continued from
s > 3/2 to s = 1 and is then finite ([35]). This is then analogous to c00 in A.17 where
infinite part gets subtracted.

A.2 Derivation of kinematical function G for spinless
scattering

This appendix shows that when G defined in (1.22) is inserted to the expression for
GFV (1.12,1.14) then one indeed gets desired GFV

1 (1.19, A.16). We begin with relations
between GFV and G through F (eq. 1.12,1.14,1.22)

GFV (|q|) =
Z

d⌦d⌦0z(q)F(q, q0)z(q0), q = (|q| ,⌦) , q0 = (|q| ,⌦0)

F (q, q0) =� 1

4⇡

X

l1,m1
l2,m2

Gl1,m1;l2,m2 (|q|)Yl1,m1 (⌦)Y
⇤
l2,m2

(⌦0) (A.18)

Gl1,m1;l2,m2 (|q|) =
|q|
8⇡E

 
�l1,l2�m1,m2 � i

X

l,m

(4⇡)
3
2

|q|l+1 clm
�
|q|2
� Z

d⌦00Y ⇤
l1,m1

(⌦00)Y ⇤
l,m (⌦00)Yl2,m2 (⌦

00)

!
.
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A.2. Derivation of kinematical function G for spinless scattering

After plugging this G to GFV one gets

GFV (|q|) =
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d⌦d⌦0z(q)z(q0)
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� 1
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8⇡E
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We use � functions under sum in the first term of GFV and expression simplifies

GFV (|q|) =
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Next we calculate sum over l1,ml1 and l2,ml2 using
P

l,m Yl,m(⌦)Y ⇤
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Product of two z functions was already defined as f in the main text (1.20)

z(q)z(q0)� (⌦� ⌦0) = z(q)z(q) = f (q) .

We use f in definition of GFV
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Now we expand new function f(q) in terms of spherical harmonics

f (q) =
X

l0m0

fl0m0 (|q|) |q|l
p
4⇡Yl0m0 (⌦) . (A.22)

With some reorganization G is rewriten in following form
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Appendix A. Derivations related to the Lüscher equation

which is after taking properties of spherical harmonics Ylm into the account equal to

GFV (|q|) =� |q|
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GFV (A.24 can now be written in form

GFV (|q|) = � |q|
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which can be compared to GFV
1 in (A.16)
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We prooved that with chosen definition of G indeed leads to GFV
1 (A.16).

A.3 Transition from l1,ml1, l2,ml2 basis to J,mJ basis for
S! = 0

Every function F of angular momentum l1, l2 and spin S can be expanded in terms of
angular momentum l1, l2 and spin S

F =
X

ml1
,mS1

ml2
,mS2

|l2,ml2 ;S2,mS2i hl2,ml2 ;S2,mS2 |F |l1ml1 ;S1,mS1i hl1ml1 ;S1,mS1 | . (A.25)

One can always add full set of states |J,mJi to any expansion. We add only one set
because we are interested in one channel approximation in which Jf = Ji and same for
its third component. After insertion of full set equation A.25 reads

F =
X

J,mJ

|J,mJi hJ,mJ |
X

ml1
,mS1

ml2
,mS2

|l2,ml2 ;S2,mS2i hl2,ml2 ;S2,mS2 |F |l1,ml1 ;S1,mS1i hl1,ml1 ;S1,mS1 | .

(A.26)
States |J,mJi and |li,mlii comute so one can rewrite expansion A.26 in following form

FJ,mJ =
X

ml1
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hJmJ |l2,ml2 ;S2,mS2i hl2,ml2 ;S2,mS2 |F |l1,ml1 ;S1,mS1i hl1,ml1 ;S1,mS1 |JmJi .

(A.27)
One uses definition of Clebsch-Coeficient

hl1,ml1 ;S1,mS1 |JmJi = CJ,mJ
l1,ml1

;S1,mS1
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A.4. Transition to J,mJ , l, S basis for scattering amplitude and
kinematical function

and that coeficients are real
CJ,mJ

l1,ml1
;S1,mS1

=
⇣
CJ,mJ

l1,ml1
;S1,mS1

⌘⇤

and
Fl1,l2,S1,S2 = hl2,ml2 ;S2,mS2 |F |l1,ml1 ;S1,mS1i

in equation A.27. One can write final transitional expression
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CJ,mJ
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Fl1,l2,S1,S2 , (A.28)

where function F , previously written in basis l,ml (Fl1,l2,S1,S2) is now written in basis of
total angular momentum J and its third component mJ (FJ,mJ ) .

A.4 Transition to J,mJ, l, S basis for scattering ampli-
tude and kinematical function

Here longer calculation for transition from one basis l,ml to another J,mJ , l, S for both
quantities in quntization condition (M and G) are given. In transition rotation using CG
coeficients (1.32) is used.

A.4.1 Kinematical function G
In generalization of kinematical function G for scattering of particles with spin one should
find dependence of G (equation 1.3) which was previously l1,m1 ! l2,m2 to dependence
on J1,mJ1 , S1, l1 ! J2,mJ2 , S2, l2. With transition (1.32) one expand kinematical function
previously in basis of angular momentum l to new basis depending on total angular
momentum J , angular momentum l and spin S. Calculation is similar to the one for
scattering amplitude M. We perform transformation (1.32) on kinematical function G
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(A.29)
The kinematical function G was previously dependent only on angular momentum l

and therefore had matrix element Gl1ml1
l2ml2

(q) (1.22)
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Gl1ml1
l2ml2

(q). (A.30)

Final result for kinematical function is

GJ1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(q) =
|q|
8⇡E

�S1,S2

"
�l1l2�J1,J2�mJ1 ,mJ2

+ iGFV
J1,mJ1 ,l1,S1

J2,mJ2 ,l2,S2

(q)

#
, (A.31)

where finite volume correction are in
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