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Continuum vs. lattice symmetries

On the lattice symmetries are typically reduced with respect to the
continuum. Examples are

1 Space-Time symmetries: the Euclidean O(4) rotations are
reduced to the O(4,ZZ) group of the hypercubic lattice. Other
lattice geometries are possible, even random lattices have
been tried.

2 Supersymmetry: only partially realisable on the lattice
3 Chiral and Flavour symmetries:

staggered quarks: only a U(1)×U(1) symmetry remains
Wilson quarks: an exact SU(Nf)V
twisted mass Wilson quarks: various U(1) symmetries (both
axial and vector)
overlap/Neuberger quarks: complete continuum symmetries!
Domain Wall quarks: (negligibly ?) small violations of axial
symmetries; consequences are analysed like for Wilson quarks

Case study: chiral and flavour symmetries with Wilson type quarks



Exact lattice Ward identities (1)

Euclidean action S = Sf + Sg:

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2
0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Isospin transformations (Nf = 2, τ1,2,3 Pauli matrices):

ψ(x) → ψ′(x) = exp
(
iθ(x)12τ

a
)
ψ(x) ≈ (1 + δaV(θ))ψ(x),

ψ(x) → ψ
′
(x) = ψ(x) exp

(
−iθ(x)12τ

a
)
ψ(x) ≈ (1 + δaV(θ))ψ(x)

Perform change of variables in the functional integral and expand
in θ

〈O[ψ,ψ,U]〉 = Z−1
∫

D[ψ,ψ]D[U]e−SO[ψ,ψ,U].

Due to D[ψ,ψ] = D[ψ′, ψ
′
] one finds the vector Ward identity

〈δaV(θ)O〉 = 〈OδaV(θ)S〉



Exact lattice Ward identities (2)

Variation of the action, Noether current:

δaV(θ)S = −ia4
∑
x

θ(x)∂∗µṼ
a
µ (x)

Ṽ a
µ (x) = ψ(x)(γµ − 1)

τ a

4
U(x , µ)ψ(x + aµ̂)

+ψ(x + aµ̂)(γµ + 1)
τ a

4
U(x , µ)†ψ(x)

Choose region R and θ:

R = {x : t1 < x0 ≤ t2}, θ(x) =

{
1 if x ∈ R

0 otherwise



Exact lattice Ward identities (3)

if O = Oext is localised outside R:

0 = 〈Oextiδ
a
V(θ)S〉 = a4

t2∑
x0=t1+a

∑
x

〈Oext∂
∗
µṼ

a
µ (x)〉

= a

t2∑
x0=t1+a

∂∗0〈OextQ
a
V(x0)〉

= 〈OextQ
a
V(t2)〉 − 〈OextQ

a
V(t1)〉

i.e. the vector charge is time-independent;
This expresses the exact vector symmetry on the lattice;
N.B.: These are exact identities between lattice correlation
functions!



Exact lattice Ward identities (4)

Choosing O = OextṼ
b
µ (y), with y ∈ R:

iεabc
〈
OextṼ

c
k (y)

〉
=

〈
OextṼ

b
k (y) [Qa

V(t2)− Qa
V(t1)]

〉
iεabc

〈
OextQ

c
V(y0)

〉
=

〈
OextQ

b
V(y0) [Qa

V(t2)− Qa
V(t1)]

〉

N.B. The RHS does not vanish since the time ordering
matters: t1 < y0 and t2 > y0

Constitutes Euclidean version of charge algebra!



Exact lattice Ward identities (5)

implies that the Noether current Ṽ a
µ is protected against

renormalisation; if we admit a renormalisation constant ZṼ it
follows that Z 2

Ṽ
= Z

Ṽ
hence ZṼ = 1; its anomalous dimension

vanishes!

Any other definition of a lattice current, e.g. the local current

V a
µ (x) = ψ(x)γµγ5ψ(x), (VR)aµ = ZVV

a
µ

can be renormalised by comparing with the conserved current.
Its anomalous dimension must vanish, i.e.

ZV = ZV(g0)
g0→0∼ 1 +

∞∑
n=1

Z
(n)
V g2n

0 .



Continuum chiral WI’s as normalisation conditions

For chiral symmetry there is no conserved current with Wilson
quarks.

However: expect that chiral symmetry can be restored in the
continuum limit!

⇒ [Bochicchio et al ’85 ]: use continuum chiral Ward identities
and impose them as normalisation condition at finite lattice
spacing a!



Continuum chiral WI’s as normalisation conditions

Define chiral variations:

δaA(θ)ψ(x) = iγ5
1
2τ

aθ(x)ψ(x), δaA(θ)ψ(x) = ψ(x)iγ5
1
2τ

aθ(x)

Derive formal continuum Ward identities assuming that the
functional integral can be treated like an ordinary integral:

⇒ 〈δaA(θ)O〉 = 〈OδaA(θ)S〉,

δaA(θ)S = −i
∫

d4xθ(x)
(
∂µA

a
µ(x)− 2mPa(x)

)
Aa
µ(x) = ψ(x)γµγ5

1
2τ

aψ(x), Pa(x) = ψ(x)γ5
1
2τ

aψ(x)



Simplest chiral WI: the PCAC relation (1)

Shrink the region R to a point x :

〈Oextδ
a
A(θ)S〉 = 0

⇒
〈
∂µA

a
µ(x)Oext

〉
= 2m 〈Pa(x)Oext〉

The PCAC relation implies that chiral symmetry is restored in
the chiral limit.



Simplest chiral WI: the PCAC relation (2)

Impose PCAC on Wilson quarks at fixed a: define a bare
PCAC mass:

m =

〈
∂µA

a
µ(x)Oext

〉
〈Pa(x)Oext〉

A renormalised quark mass can thus be written in two ways

mR = ZAZ
−1
P m = Zm(m0−mcr) ⇒ m = ZmZPZ

−1
A (m0−mcr)

⇒ The critical mass can be determined by measuring the bare
PCAC mass m as a function of m0 and extra/interpolation to
m = 0.

Note: m is only defined up to O(a); any change in Oext will
lead to O(a) differences.



Determination of the critical mass

PCAC quark mass from
SF correlation functions:

m =
∂0fA(x0)

2fP(x0)

83 × 16 lattice, quenched
QCD, a = 0.1 fm



More chiral WI’s: axial current normalisation

At m = 0 we can derive the Euclidean current algebra (in
finite volume!):

iεabc
〈
OextQ

c
V(y0)

〉
=
〈
OextQ

b
A(y0) [Qa

A(t2)− Qa
A(t1)]

〉
Imposing this continuum identity on the lattice (at m = 0)
fixes the normalisation of the axial current

(AR)aµ = ZA(g0)Aa
µ, ZA(g0)

g0→0∼ 1 +
∞∑
n=1

Z
(n)
A g2n

0 .

Note: When changing the external fields Oext, the result for
ZA will change by terms of O(a).

The PCAC relation and the charge algebra become operator
identities in Minkowski space. Changing Oext corresponds to
looking at different matrix elements of these operator
identities. On the lattice these must be equal up to O(a)
terms.



Axial current normalisation with Wilson quarks

ZA in quenched approximation [Lüscher et al. ’96, Leder & S ’10 ]
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Simplest chiral WI: the PCAC relation

Shrink the region R to a point x :

〈Oextδ
a
A(θ)S〉 = 0

⇒
〈
∂µA

a
µ(x)Oext

〉
= 2m 〈Pa(x)Oext〉

In the continuum the PCAC quark mass

m =

〈
∂µA

a
µ(x)Oext

〉
2 〈Pa(x)Oext〉

must be independent of the choice for Oext, x , background
field,...!



Need for O(a) improvement of Wilson quarks

O(a) artefacts can be quite large with Wilson quarks:

PCAC quark mass from
SF correlation functions:

m =
∂0fA(x0)

2fP(x0)

83 × 16 lattice, quenched
QCD, a = 0.1 fm, 2
different gauge
background fields.



On-shell O(a) improvement
Recall Symanzik’s effective continuum theory from lecture 1

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

where L1 is a linear combination of the fields:

ψσµνFµνψ, ψDµDµψ, mψD/ψ, m2ψψ, m tr {FµνFµν}

The action S1 appears as insertion in correlation functions

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)



On-shell O(a) improvement (1)

Basic idea:

Introduce counterterms to the lattice action and composite
operators such that S1 and φ1 are cancelled in the effective
theory

As all physics can be obtained from on-shell quantitities
(spectral quantitities like particle energies or correlation
function where arguments are kept at non-vanishing distance)
one may use the equations of motion to reduce the number of
counterterms

The contact terms which arise from having y ≈ xi can be
analysed in the OPE and are found to be of the same
structure as the counterterms anyway contained in φ1; this
amounts to a redefinition of the counterterms in φ1.

After using the equations of motion one remains with:

ψσµνFµνψ, m2ψψ, m tr {FµνFµν}



On-shell O(a) improvement (2)

1 On-shell O(a) improved Lattice action
The last two terms are equivalent to a rescaling of the bare
mass and coupling (mq = m0 −mcr):

g̃2
0 = g2

0 (1 + bg (g0)amq), m̃q = mq(1 + bm(g0)amq)

The first term is the Sheikholeslami-Wohlert or clover term

SWilson → SWilson + iacsw(g0)a4
∑
x

ψ(x)σµν F̂µν(x)ψ(x)

2 On-shell O(a) improved axial current and density:

(AR)aµ = ZA(g̃0
2)(1 + bA(g0)amq)

{
Aa
µ + cA(g0)∂̃µP

a
}

(PR)a = ZP(g̃0
2, aµ)(1 + bP(g0)amq)Pa



On-shell O(a) improvement (3)

There are 2 counterterms in the massless theory csw, cA, the
remaining ones (bg , bm, bA, bP) come with amq.

Note: all counterterms are absent in chirally symmetric
regularisations!

⇒ turn this around: impose chiral symmetry to determine csw, cA

non-perturbatively:
define bare PCAC quark masses from SF correlation functions

mR =
ZA(1 + bAamq)

ZP(1 + bPamq)
m, m =

∂̃0fA(x0) + cAa∂
∗
0∂0fP(x0)

fP(x0)

At fixed g0 and amq ≈ 0 define 3 bare PCAC masses m1,2,3

(e.g. by varying the gauge boundary conditions) and impose

m1(csw, cA) = m2(csw, cA), m1(csw, cA) = m3(csw, cA)⇒ csw, cA

SF b.c.’s ⇒ high sensitivity to csw & simulations near chiral
limit



Results for csw, Nf = 4 [ALPHA ’09 ]
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On-shell O(a) improvement (4)

Before and after O(a) improvement (PCAC masses from SF
correlation functions, 83 × 16 lattice)



Quenched result for the charm quark mass [ALPHA ’02 ]

The RGI charm quark mass can be defined in various ways
starting from the subtracted bare quark mass
mq,c = m0,c −mcr

starting from the average strange-charm PCAC mass msc

starting from the PCAC mass mcc for a hypothetical mass
degenerate doublet of quarks.

Tune bare charm quark mass to match the Ds meson mass

Obtain the corresponding O(a) improved RGI masses:

r0Mc |msc = ZM r0
{

2msc

[
1 + (bA − bP)12(amq,c + amq,s)

]
−ms [1 + (bA − bP)amq,s)]

}
,

r0Mc |mc = ZM r0mc [1 + (bA − bP)amq,c] ,

r0Mc |mq,c = ZMZr0mq,c [1 + bmamq,c] .

N.B.: all O(a) counterterms are known non-perturbatively in
the quenched case!



Continuum extrapolation of the quenched RGI charm
quark mass

Continuum extrapolation:

r0Mc = A + B(a2/r20 )

r0 = 0.5 fm

Mc = 1.654(45)GeV

mMS
c (mc) = 1.301(34)GeV



Summary On-shell O(a) improvement

After O(a) improvement:

The ambiguity in mcr is reduced to O(a2)

Axial current normalisation can be defined up to O(a2)

Results exist for csw, cA for quenched and Nf = 2, 3, 4 and
various gauge actions

On-shell O(a) improvement seems to work; rather economical
for spectral quantities (e.g. hadron masses): just need csw!

Improvement of quark bilinear operators feasible, four-quark
operators difficult

Non-degenerate quark masses: rather complicated,
proliferation of b-coefficients [Bhattacharya et al ’99 ff ];

However: for small quark masses and fine lattices amq is small
(a few percent at most) and perturbative estimates of
improvement coefficients may be good enough!



The Schrödinger functional and O(a) improvement

The presence of the boundaries induces additional O(a) effects:

counterterms must be local fields of dimension 4 integrated
over the boundaries x0 = 0,T :

pure gauge theory:∫
d3x tr {F0k(x)F0k(x)},

∫
d3x tr {Fkl(x)Fkl(x)} = 0 (→ b.c.’s)

with fermions:∫
d3xψ(x)γ0D0ψ(x),

∫
d3xψ(x)γkDkψ(x),

eliminate 2nd counterterm by equation of motion

⇒ all boundary O(a) effects can be cancelled by 2 counterterms
with coefficients ct, c̃t!

In practice use perturbation theory and vary the coefficients in
simulations to assess their impact on observables.



Automatic O(a) improvement of massless Wilson quarks
[Frezzotti, Rossi ’03 ]

Assume mPCAC = 0, finite volume without boundaries:

⇒ Symanziks effective continuum action (using eqs. of motion):

Seff = S0+aS1+. . . , S0 =

∫
d4x ψD/ψ, S1 = c

∫
d4x ψσµνFµνψ

cutoff dependence of lattice correlation functions:

〈O〉 = 〈O〉cont − a〈S1O〉cont + a〈δO〉cont + O(a2).

δO are O(a) counterterms to the composite fields in O, e.g.

O = V a
µ (x)Ab

ν(y)

δO = cV i∂νT
a
µν(x)Aa

ν(y) + V a
µ (x)cA∂νP

b(y)



Automatic O(a) improvement of massless Wilson quarks

Introduce a γ5-transformation (non-anomalous for even
numbers of quarks):

ψ → γ5ψ, ψ → −ψ γ5

transform Symanzik’s effective action and O(a) counterterms

S0 → S0, S1 → −S1

Composite operators can be decomposed in γ5-even and -odd
parts:

O = O+ + O−

O± → ±O ⇒ δO± → ∓δO±



Hence for γ5-even O+ one finds

〈O+〉cont = 〈O+〉cont

〈O+S1〉cont = −〈O+S1〉cont = 0

〈δO+〉cont = −〈δO+〉cont = 0

⇒ 〈O+〉 = 〈O+〉cont + O(a2)

while for γ5-odd O− one gets

〈O−〉cont = −〈O−〉cont = 0

〈O−S1〉cont = 〈O−S1〉cont

〈δO−〉cont = 〈δO−〉cont

⇒ 〈O−〉 = −a〈O−S1〉cont + a〈δO−〉cont + O(a2)



⇒ γ5-even observables are automatically O(a) improved, while
γ5-odd observables vanish up to O(a) terms.

Remarks:

The cutoff effects are located in the γ5-odd components.
These can be easily identified and projected out for any lattice
field, and the elimination of cutoff effects is then “automatic”.

In fermion regularisation with an exact chiral symmetry
(Ginsparg-Wilson quarks) the γ5-odd fields vanish identically
⇒ no need to project out the odd components.

The automatic O(a) improvement mechanism carries over to
the massive theory if the quark mass term is chosen as
ψ̄iµqτ

3ψ (and m0 = mcr)

⇒ twisted mass QCD at “full twist”.
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Gradient flow & renormalized finite volume coupling

QCD, gauge field Aµ(x), Yang-Mills gradient flow equation:

∂tBµ(t, x) = DνGνµ(t, x)
(

= − δSg [B]
δBµ(t,x)

)
, Bµ(0, x) = Aµ(x)

with field tensor Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ].

Local gauge invariant composite fields at positive flow time t > 0 such as

E(t, x) = − 1
2 tr{Gµν(x, t)Gµν(x, t)}

are renormalized; no mixing with other fields of same or lower dimensions!
[Lüscher & Weisz ’2012];

Explicit calculations up to 2-loop order (infinite volume, dimensional
regularization) [Lüscher 2010; Harlander & Neumann 2016]:

〈E(t, x)〉 =
3g2

MS
(µ)

16π2t2

(
1 +

1.0978 + 0.0075Nf
4π

g2
MS

(µ) + ...

)
, µ =

1
√

8t

⇒ E(t, x) is, for t > 0, a renormalized field; unlike E(0, x) which has a quartic
and a logarithmic divergence!
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Gradient flow couplings

Infinite volume: Non-perturbative definition of a renormalized “gradient flow
coupling” at scale µ = 1/

√
8t:

g2
GF,∞(µ)

def= 16π2

3
t2〈E(t, x)〉

Finite volume: consider 〈E(t, x)〉 in a finite box of dimension L4, fix the ratio
c =
√

8t/L and define

ḡ2
GF(L) = N (c)−1t2〈E(t, x)〉, lim

c→0
N (c) =

3
16π2

defines family of renormalized couplings, with parameter c.
(typical range from 0.2 to 0.5);

N (c) is calculable in lowest order perturbation theory; depends on b.c’s for the
gauge field; periodic in space; time direction:

periodic b.c.’s [Fodor et al. 2012]
⇒ SF (Dirichlet) b.c.’s [Fritzsch & Ramos 2012], used here!

twisted periodic b.c.’s [Ramos 2013]
open-SF (Neumann-Dirichlet) b.c.’s [Lüscher 2013]
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Matching the SF and GF couplings, [ALPHA coll. ’17]
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Where do we stand?

So far:

L0ΛNf =3
MS

= 0.0791(21), ḡ2
SF(L0) = 2.012 ⇒ g2

GF(2L0) = 2.6723(64)

A rough estimate indicates that 1/L0 ≈ 4 GeV

Need to reach scale 1/Lhad around 200 MeV to make safe contact e.g. to
FK = 160 MeV

Define Lhad implicitly through

g2
GF(Lhad) = 11.31

Remaining steps:

1 Scale evolution of g2
GF(L) between 2L0 to Lhad:

⇒ Lhad/L0

2 Determine Lhad in 1/MeV e.g. from LhadFK (“scale setting”)
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Determination of Lhad/L0

Note: ratio Lhad/L0 not an integer power of 2; how to proceed?

Determine the step-scaling function in the continuum limit

σ(u) = lim
a/L→0

Σ(u, a/L), Σ(u, a/L) = g2
GF(2L)

∣∣
g2

GF(L)=u,m(L)=0

Relation to the β-function:

log 2 = −
∫ √σ(u)

√
u

dx
β(x)

, β(gGF) = −L
∂gGF(L)
∂L

⇒ obtain non-perturbative β-function from the step-scaling function

Find:

Lhad
L0

= 2× exp
{
−
∫ gGF(Lhad)

gGF(2L0)

dx
β(x)

}
= 21.86(42)
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Obtaining the step-scaling function
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Continuum extrapolated step-scaling function

−0.1

−0.095

−0.09

−0.085

−0.08

−0.075

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

1/
σ

(u
)
−

1/
u

u

1-loop
Global fit

Σ
1/Σ



8/ 16

Extracting the β-function

fit ansatz:

β(g) = − g3

P (g2) , P (g2) = p0 + p1g
2 + p2g

4 + . . . .

Determine fit coefficients p0, p1, . . . from the data for step scaling function σ(u)

log(2) = −
∫ √σ(u)

√
u

dx
β(x) =

∫ √σ(u)

√
u

dxP (x2)
x3

= − p0
2

[
1

σ(u) −
1
u

]
+ p1

2 log
[
σ(u)
u

]
+
nmax∑
n=1

pn+1
2n [σn(u)− un] ,
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The β-functions, global picture
α ≡ g2/(4π)
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Non-perturbative running of the SF and GF couplings in Nf = 3 QCD
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Matching to hadronic physics

So far:

Λ(Nf =3)
MS

=
Lhad
L0
×L0Λ(Nf =3)

MS
×

1
Lhad

= 1.729(57)/Lhad ⇒ require 1/Lhad in physical units

The experimental input is

mπ = 134.8(3) MeV, mK = 494.2(3) MeV [FLAG 2017]

fπK ≡ 2
3fK + 1

3fπ = 147.6(5) MeV [PDG 2014]

Taking the scale from fπK one needs

fPDG
πK

fπKLhad
=

fPDG
πK

fπK
√
t0
×
√
t0

Lhad

where t0 is an intermediate scale defined with the gradient flow [Lüscher ’10]

t20〈E(t0, x)〉 = 0.3

One finds, (with t∗0 defined at the flavour SU(3) symmetric point) [Bruno, Korzec,
Schaefer 2016] √

8t∗0 = 0.413(5)(2) fm
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Connecting SF to Large Volume (slide by T. Korzec, Lattice ’17)

Λ(Nf =3)
MS

= fPDG
πK

fπK
√
t∗0︸ ︷︷ ︸

scale setting

×
√
t∗0

Lhad︸︷︷︸
connection to CLS

× Lhad
2L0︸︷︷︸

GF running

× 2L0
L0︸︷︷︸

change of schemes

×Λ(Nf =3)
MS

L0︸ ︷︷ ︸
SF running

From large volume simulations

t∗0 known in fm
t∗0/a

2 known at β ∈ {3.4, 3.46, 3.55, 3.7, 3.85} (massive theory)
Corresponds to β ∈ {3.3985, 3.4587, 3.549, 3.6992, 3.8494} (massless)

From gradient flow running

Lhad/a for β ∈ {3.3998, 3.5498, 3.6867, 3.8, 3.9791} (massless)

Interpolate Lhad/a to large-volume β’s (or other way around)

Continuum extrapolate: Lhad/a√
t∗/a2
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Connecting Lhad to infinite volume scale

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

g2GF(Lhad,1) = 11.31

g2GF(Lhad,2) = 10.20

L
h
a
d
/√

t? 0

a2/t?0

Set A
Set B

Final Result
Lhad√
t∗0

= 6.825(47)
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Everything Together (slide by T. Korzec, Lattice 2017)

Final Result

Λ(Nf =3)
MS

= 341(12) MeV

Λ(5)
MS

= 215(10)(03) MeV pert. decoupling

αMS(MZ) = 0.1185(8)(3)
0.1174(16) PDG non-lattice
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K. Maltman et al., PRD78 (2008)
PACS-CS, JHEP 0910 (2009)
HPQCD, PRD82 (2010)
HPQCD, PRD82 (2010)
A. Bazavov et al., PRD90 (2014)
HPQCD, PRD91 (2015)
this work

αS(MZ)
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Conclusions for αs(mZ)

The determination of αs is well-suited for the lattice approach; in contrast to
many other approaches, here the systematics can be controlled by combining
technical tools developed over the last 20 years:

finite volume renormalization schemes and recursive step-scaling methods
gradient flow couplings and scales.
non-perturbative Symanzik improvement
perturbation theory adapted to finite volume

The final result Λ(Nf =3)
MS

= 341(12)MeV does not rely on perturbation theory
below O(100) GeV!

⇒ the error is still dominated by statistics!
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Final remarks
Gradient flow, many applications:

Definition of intermediate scales t0 and w0, which are easy to measure with
high precision

Definition of renormalized couplings, both in infinite and finite volume
Access to a wealth of renormalized quantities [Lüscher & Weisz ’12, Lüscher ’13]

gauge invariant composite fields at finite flow time are renormalized!
can be generalized to fermion fields; renormalization required but very simple.

⇒ can use fields at finite flow times as external sources in on-shell renormalization
conditions

Small flow time expansion, t→ 0 + PT may yield renormalized matrix elements
while bypassing complicated lattice renormalization problems! However, there is
a window problem:

a2 � t� Λ2

Practical problem: lattice artefacts can be large (e.g. SSF for GF coupling)
Some omissions:

operator renormalization problems including mixing

strategies to bypass lattice specific renormalization problems (e.g. BK in
tmQCD)

...

Thank you!


