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Step Scaling Functions

Given ḡ(L) and m̄(L), the aim is to construct the Step Scaling
Functions σ(u) and σP(u):

σ(u) = ḡ2(2L)|u=ḡ2(L),

σP(u) = lim
a→0

ZP(g0, 2L/a)

ZP(g0, L/a)

∣∣∣∣
u=ḡ2(L)

These are related to the usual RG functions:∫ √u
√
σ(u)

dg

β(g)
= ln 2 σP(u) = exp

∫ √u
√
σ(u)

τ(g)

β(g)
dg

One thus considers a change of scale by a finite factor s = 2;
RG functions β and τ tell us what happens for infinitesimal
scale changes.



Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4,
measure ḡ2(L) = u (this
sets the value of u)

double the lattice and
measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and
tune g ′0 such that
ḡ2(L) = u is satisfied

double the lattice and
measure

Σ(u, 1/6) = ḡ2(2L)

and so on ...



Continuum extrapolation of the SSF [ALPHA ’05 ]



The SSF in the continuum limit

[ALPHA coll., Della Morte et al ’05 ]



The running of the SF coupling

[ALPHA coll., Della Morte et al ’05 ]



Determination of the Λ-parameter

The formula

Λ = µ (b0ḡ
2)−b1/2b2

0 exp

{
− 1

2b0ḡ2

}
× exp

{
−
∫ ḡ

0
dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}
holds for any value of µ. We may use it at Lmin to obtain

ΛLmin = f (ḡ(Lmin))

The function f (g) can be evaluated at g = ḡ(Lmin) since this
is deep in the perturbative region. The integral in the
exponent∫ ḡ

0
dx

[
b2b0 − b2

1

b3
0

x + O(x3)

]
=

b2b0 − b2
1

2b3
0

ḡ2 + O(ḡ4)

may thus be evaluated using the β-function at 3-loop order.
Since Lmax = 2nLmin one knows LmaxΛ
still need FπLmax



Matching to a low energy scale

Ideally one would like to compute e.g. FπΛ, and take
Fπ = 132MeV from experiment

What is required? The scale Lmax is implicitly defined:

ḡ2(Lmax) = 4.84 ⇒ (Lmax/a)(g0)

Setting Lmax/a = 6, 8, 10, . . . one then finds corresponding
values of the bare coupling (at fixed g0 some interpolation of
Lmax/a will be necessary instead)

One must then be able to compute aFπ in a large volume
simulation at the very same values of the bare coupling:

FπΛ = lim
g0→0

(Lmax/a)(g0)(aFπ)(g0)

One thus needs a range of g0 where both can be computed,
aFπ and ḡ(Lmax)

Remark: intermediate results are often quoted in terms of
Sommer’s scale r0, rather than Fπ.



Results for QCD with Nf = 0 and Nf = 2 quark flavours

The scale r0 [R. Sommer ’93 ] is obtained from the force F (r)
between static quark and antiquark separated by a distance r :

r2
0F (r0) = 1.65

The r.h.s. was chosen so that phenomenological estimates
from potential models yield r0 = 0.5 fm.

Recent result for Nf = 2 ([ALPHA ’12 ]): FK = 155MeV
implies r0 = 0.503(10) fm (at physical pion mass!).

Results for Λ using r0 = 0.5 fm [ALPHA ’99-’12 ]

Λ
(2)

MS
r0 = 0.789(52), Λ

(2)

MS
= 310(20)MeV

Λ
(0)

MS
r0 = 0.602(48), Λ

(0)

MS
= 238(19)MeV



The running quark mass

Coupled evolution of the running mass and the coupling:

m(2L) = σm(u)m(L), σm(u) = 1/σP

ḡ2(2L) = σ(u)

Once the running coupling is known in a range [u0, un],

u0 = ḡ2(Lmin), uk = ḡ2(2kLmin), k = 1, 2, . . . , n

determine σm(u) for the same range of couplings: evolution
of quark mass and coupling recursively

m(2kLmin)/m(2k−1Lmin) = σm(uk), k = 1, 2, . . . , n

one obtains m(2Lmax)/m(Lmin)

Extract m(Lmin)/M using PT as for Λ-parameter



Running mass in the SF scheme [ALPHA ’05 ]
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Relation to bare quark masses

In practice with Wilson type quarks, one avoids the additive
renormalisation of the bare quark mass parameter by replacing
it by a measured bare mass mPCAC from the (bare) PCAC
relation:

mPCAC
def
=
〈∂µAa

µ(x)O〉
2〈Pa(x)O〉

The running quark mass is then related to mPCAC

m(L) = Z−1
P (g0, L/a)ZA(g0)︸ ︷︷ ︸

known factors

mPCAC(g0)︸ ︷︷ ︸
measured

,

Combine results,

M = ZM(g0)mPCAC(g0)

and take the continuum limit g0 → 0.



Strange quark mass

Nf = 2 result for the strange quark mass using this strategy
([ALPHA ’12 ]):

Ms = 138(3)(1)MeV ⇒ mMS(µ = 2GeV) = 102(3)(1)MeV

Quoted errors are statistical and systematic;

Note: Except for quenching of the strange quark the ALL
systematic errors have been addressed!



Summary step scaling

The recursive finite volume technique has completely
eliminated the problem with large scale differences.

Physical results require a matching calculation at a low energy
scale: it is crucial to have a range in bare couplings where
both, the renormalisation conditions and the hadronic input
can be computed

State of the art [ALPHA ’17 ]: QCD with Nf = 3 & technical
refinements:

gradient flow coupling in finite volume scheme at low energies
Global fits to the step-scaling function
Improved control of cutoff effects
use of the flow time scale t0 instead of r0 as intermediate scale

Many more applications in the literature: all quark bilinear
operators, ∆F = 2 4-quark operators, HQET,..



Renormalized lattice QCD with Wilson quarks

The action S = Sf + Sg is given by

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2

0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Symmetries: U(Nf)V (mass degenerate quarks), P,C ,T and
O(4,ZZ)

⇒ Renormalized parameters:

g2
R = Zgg

2
0 , mR = Zm (m0 −mcr) , amcr = amcr(g0).

In general: Z = Z (g2
0 , aµ, am0);

Quark mass independent renormalisation schemes:
Z = Z (g2

0 , aµ)

Simple non-singlet composite fields, e.g. Pa = ψγ5τ
aψ

renormalise multiplicatively, Pa
R = ZP(g2

0 , aµ, am0)Pa



Approach to the continuum limit (1)

Suppose we have renormalised lattice QCD non-perturbatively, how
is the continuuum limit approached?
Symanzik’s effective continuum theory [Symanzik ’79 ]:

purpose: render the a-dependence of lattice correlation
functions explicit. ⇒ structural insight into the nature of
cutoff effects

at scales far below the cutoff a−1, the lattice theory is
effectively continuum like; the influence of cutoff effects is
expanded in powers of a:

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

Lk(x): linear combination of fields

with canonical dimension 4 + k
which share all the symmetries with the lattice action



Approach to the continuum limit (2)

A complete set of dimension 5 fields for L1 is given by:

ψσµνFµνψ, ψDµDµψ, mψD/ψ, m2ψψ, m tr {FµνFµν}

The same procedure applies to composite fields:

φeff(x) = φ0 + aφ1 + a2φ2 . . .

for instance: φ(x) = Pa(x), basis for φ1:

mψγ5
1
2τ

aψ, ψD/
←
γ5

1
2τ

aψ − ψγ5
1
2τ

aD/ψ

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field φ

Gn(x1, . . . , xn) = Zn
φ 〈φ(x1) · · ·φ(xn)〉con



Approach to the continuum limit (3)

Effective field theory description:

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)

〈· · · 〉 is defined w.r.t. continuum theory with S0

the a-dependence is now explicit, up to logarithms, which are
hidden in the coefficients.

In perturbation theory one expects at l-loop order:

P(a) ∼ P(0) +
∞∑
n=1

l∑
k=1

cnka
n(ln a)k

where e.g. P(a) = Gn at fixed arguments.



Approach to the continuum limit (4)

Conclusions from Symanzik’s analysis:

Asymptotically, cutoff effects are powers in a, modified by
logarithms;

In contrast to Wilson quarks, only even powers of a are
expected for

bosonic theories (e.g. pure gauge theories, scalar field theories)
fermionic theories which retain a remnant axial symmetry
(overlap, Domain Wall Quarks, staggered quarks, Wilson
quarks with a twisted mass term, etc.)

In QCD simulations a is typically varied by a factor 2

⇒ logarithms vary too slowly to be resolved; linear or quadratic
fits (in a resp. a2) are used in practice.



Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson’s plaquette action:[CP-PACS
coll., Aoki et al. ’02 ] a = 0.05− 0.1 fm, experimental input:
mK , mπ, mρ
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Example 2: pion mass in Nf = 2 tmQCD

[ETM coll. Baron et al ’09 ]
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Example 3: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al ’02 ]



The 2d O(n) sigma model: a test laboratory for QCD

S = n
2γ

∑
x ,µ

(∂µs)
2, s = (s1, . . . , sn) s2 = 1

like QCD the model has a mass gap and is asymptotically free

many analytical tools: large n expansion, Bethe ansatz, form
factor bootstrap, etc.

efficient numerical simulations due to cluster algorithms.

⇒ very precise data over a wide range of lattice spacing (a can
be varied by 1-2 orders of magnitude).

Symanzik: expect O(a2) effects, up to logarithms

Large n, at leading [Caracciolo, Pelissetto ’98 ] and
next-to-leading [Knechtli, Leder, Wolff ’05 ]:

P(a) ∼ P(0) +
a2

L2
(c1 + c2 ln(a/L))



A sobering result (1):

Numerical study of renormalised finite volume coupling to high
precision (n = 3) [Hasenfratz, Niedermayer ’00, Hasenbusch et al.
’01, Balog et al. ’09 ]

Cutoff effects seem to be almost linear in a!

Is this just an unfortunate case?



A sobering result (2):

[Balog, Niedermayer & Weisz ’09 ]

0 0.05 0.1
a/L

1.25

1.27

1.29

1.31

Σ(
2,

u 0,a
/L

)
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A closer look (1)

[Knechtli, Leder, Wolff ’05 ], plot of cutoff effects vs. a2/L2,
various n:
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Asymptotic behaviour for larger n according to expectation, what
about n = 3?



A closer look (2)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus ’04 ]! Subtract & study pure cutoff effect [Balog,
Niedermayer, Weisz ’09 ]
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A closer look (3)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus ’04 ]!
Subtract & study pure cutoff effect: Σ(2, u0, a/L)− σ(2, u0):
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A closer look (4) & solution of puzzle

[Balog, Niedermayer & Weisz ’09 ]

performed two-loop calculation with both effective Symanzik
theory and lattice theory (various actions)

Matching of both sides and subsequent RG considerations

⇒ Symanzik theory predicts for O(n) model leading O(a2)
behaviour:

δ(a) ∝ a2
(
ln a2

)n/(n−2)

compatible with large n result since limn→∞{n/(n − 2)} = 1

For O(3) model:

δ(a) ∝ a2
(
ln3(a2) + c1 ln2(a2) + c2 ln(a2) + c4

)
+ O(a4)



A closer look (5)

Coefficient of O(a2) term [Balog, Niedermayer & Weisz ’09 ]:
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Not exactly constant! Multiplied with a2 obtain “fake” linear
behaviour in a!



Yang-Mills theory and QCD

Recently, [N. Husung, P. Marquard and R. Sommer, 2020 ] have
obtained the powers of the logs modifying the a2-effects for
spectral quantities (e.g. glueball masses) in pure SU(3) gauge
theory (various lattice regularizations):

find negative leading exponents of (−7/11, −63/55) of ln(a) !
⇒ Convergence to continuum is faster than a2

Work for QCD in progress, very interesting, keep tuned!



Summary, approach to the continuum

Symanzik’s analysis is applicable beyond perturbation theory

Powers of a are accompanied by fractional powers of
logarithms; these are perturbatively computable due to
asymptotic freedom, using Symanzik’s effective theory.

Lesson from O(3) model: logarithmic corrections to powers in
a can be large (a2 ln3(a));
However, results by Husung et al. in pure gauge theory and
QCD are re-assuring.

It helps to combine results from different regularisations:
renormalised quantities must have the same continuum limit

Numerical results in QCD: typically lattice spacing varied by a
factor 2, logarithms ignored (cannot be resolved).

⇒ Fitting higher order polynomials in a ignoring the logarithms
has no theoretical basis and can be dangerous!


