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© Finite volume schemes and step scaling

@ Running coupling, quark masses and operators
© Test of perturbation theory at high energies
@ Continuum limit and lattice artifacts.

© Symanzik’s effective theory

@ The O(3) model, a sobering example

@ Yang-Mills and QCD

@ Conclusions



Step Scaling Functions

@ Given g(L) and m(L), the aim is to construct the Step Scaling
Functions o(u) and op(u):

o(u) = Z*(2L)|u=g2(),
Zp(80,2L/a)

op(u) = i Zp(go, L/a)

u=g>2(L)
@ These are related to the usual RG functions:
Vu Vu
/ de__ In2 op(u) = exp/ (g) dg
Vo(u) ﬁ(g) Vo(u) ﬁ(g)

@ One thus considers a change of scale by a finite factor s = 2;
RG functions 8 and 7 tell us what happens for infinitesimal
scale changes.




Lattice approximants X (u, a/L) for o(u)

@ choose gy and L/a =4,
measure g2(L) = u (this
sets the value of u)

@ double the lattice and
measure

Y (u,1/4) = g%(2L)

@ now choose L/a =6 and
tune g} such that
g%(L) = u is satisfied

@ double the lattice and (97
measure

¥ (u,1/6) = g%(2L)

@ and so on ...

=

2(2,u,1/4)

oy

2(2,u,1/6)
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Continuum extrapolation of the SSF [ ]
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The SSF in the continuum limit

[ALPHA coll., Della Morte et al '05 |
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The running of the SF coupling

[ALPHA COII, De”a Morte et al ’05 ]D((/J') LR LR LR
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Determination of the A-parameter

@ The formula

1
A = b -2 —b1/2b2 o
1 (bog”) 0 exp 2bog?

g 1 1 by
“XP{‘/O d[ﬁ()+b_b]}

holds for any value of . We may use it at Ly, to obtain
ALmin - f(g(me))

@ The function f(g) can be evaluated at g = g(Ly,in) since this
is deep in the perturbative region. The integral in the
exponent

g baby — b? 3 baby — b? _, 4
dx | ——=—— 0O =———=8°4+0(3
[ [ 00| = 22 w0
may thus be evaluated using the -function at 3-loop order.
@ Since Lyax = 2"Lin one knows Ly ax/\
o still need F Lax



Matching to a low energy scale

Ideally one would like to compute e.g. F;A, and take
F; = 132MeV from experiment

@ What is required? The scale Ly,ax is implicitly defined:

52(LmaX) =4.84 = (Lmax/a)(&0)

Setting Lyax/a = 6,8,10,... one then finds corresponding
values of the bare coupling (at fixed gy some interpolation of
Liax/a will be necessary instead)

@ One must then be able to compute aF; in a large volume
simulation at the very same values of the bare coupling:

Foh = lim (L /2) g0) (3F ) &0)

@ One thus needs a range of gy where both can be computed,
aF; and g(Lmax)

@ Remark: intermediate results are often quoted in terms of
Sommer’s scale rg, rather than F;.



Results for QCD with Ny = 0 and Ny = 2 quark flavours

@ The scale ry [R. Sommer '93 | is obtained from the force F(r)
between static quark and antiquark separated by a distance r:

r8F(ry) = 1.65

The r.h.s. was chosen so that phenomenological estimates
from potential models yield rp = 0.5 fm.

@ Recent result for Nf = 2 ([ALPHA '12 ]): Fx = 155MeV
implies rp = 0.503(10) fm (at physical pion mass!).

@ Results for A using rp = 0.5 fm [ALPHA '99-'12 ]

A2 = 0789(52),  ABL =310(20) MeV
=2

MS MS
A = 0.602(48), AL =238(19) MeV

MS MS



The running quark mass

@ Coupled evolution of the running mass and the coupling:

QL) = om(u)m(l),  om(u)=1/op
(2L) = o(u)

ol

@ Once the running coupling is known in a range [ug, un),
uO:g2(Lmin)a Uk :g2(2kLm1n),k: 1.2,....n

determine o, (u) for the same range of couplings: evolution
of quark mass and coupling recursively

(25 Liin) /(25 i) = om( k), k=1,2,....n

@ one obtains mM(2Lyax)/M(Lmin)
e Extract m(Lmin)/M using PT as for A-parameter



Running mass in the SF scheme |

% (uall)

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

m
e b bt
i O ----
G---O----B------ & -
Gy
R oo
e e SRR ¢
0 0.01 0.02 0.03 0.04

(w)/M

0.8

0.6

0.4

T

SF scheme, N,=2

T

— 2/3-loop
---1/2-loop

Lol

P

|

10

100
/A

1000




Relation to bare quark masses

@ In practice with Wilson type quarks, one avoids the additive
renormalisation of the bare quark mass parameter by replacing
it by a measured bare mass mpcac from the (bare) PCAC

relation:
def (OuA;(x)0)

A T S {pa)0)

@ The running quark mass is then related to mpcac

m(L) = Z5 ™ (go. L/a)Za(go) mpcac(go),
knoWn‘;aCtOrS measured

@ Combine results,

M = Zw(go)mpcac(go)

and take the continuum limit gg — O.



Strange quark mass

Nt = 2 result for the strange quark mass using this strategy
([ALPHA '12 ]):

M, =138(3)(1)MeV = ™S =2GeV) = 102(3)(1) MeV

@ Quoted errors are statistical and systematic;

@ Note: Except for quenching of the strange quark the ALL
systematic errors have been addressed!



Summary step scaling

@ The recursive finite volume technique has completely
eliminated the problem with large scale differences.

@ Physical results require a matching calculation at a low energy
scale: it is crucial to have a range in bare couplings where
both, the renormalisation conditions and the hadronic input
can be computed

e State of the art [ALPHA '17 |: QCD with Nf = 3 & technical
refinements:

gradient flow coupling in finite volume scheme at low energies
Global fits to the step-scaling function

Improved control of cutoff effects

use of the flow time scale t; instead of ry as intermediate scale

@ Many more applications in the literature: all quark bilinear
operators, AF = 2 4-quark operators, HQET, ..



Renormalized lattice QCD with Wilson quarks

The action S = S¢ + S, is given by
S o= a' ) () (Dw+mo)v(x),  Sg= g tr{l-Pu(x)}
X v

Dw = 3 {(Vu+ Vi) —aViv,}

e Symmetries: U(Ng)y (mass degenerate quarks), P, C, T and
0(4,7Z)
= Renormalized parameters:

g1:2{ = Zggga mgr = Zn (mO - mcr) s aMey = amcr(gO)'

o In general: Z = Z(gZ, aj, amo);

@ Quark mass independent renormalisation schemes:
Z=2Z(g3,ap) B

@ Simple non-singlet composite fields, e.g. P? = 1y57%)
renormalise multiplicatively, P = Zp(gg, au, amo) P?



Approach to the continuum limit (1)

Suppose we have renormalised lattice QCD non-perturbatively, how
is the continuuum limit approached?
Symanzik's effective continuum theory [Symanzik '79 |:

@ purpose: render the a-dependence of lattice correlation
functions explicit. = structural insight into the nature of
cutoff effects

@ at scales far below the cutoff a—1, the lattice theory is
effectively continuum like; the influence of cutoff effects is
expanded in powers of a:

St = So+aSi+a%S+..., 50:5&2%113

Ly(x): linear combination of fields

e with canonical dimension 4 + k
e which share all the symmetries with the lattice action



Approach to the continuum limit (2)

A complete set of dimension 5 fields for £; is given by:
Eauu":,uuwa ED,U‘D,Lva m$W7 mzaw, mtl’{Fw,ij}
The same procedure applies to composite fields:
ber(X) = do + ap1 + 3% ...
for instance: ¢(x) = P?(x), basis for ¢1:
hA Ll a - 1 _a,), . 1_a
ITH,D’)/52T d}a ¢DYSQT Q;Z) w’7527_ W

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field ¢

Gn(X1; cen 7Xn) = Z£<¢(X1) T ¢(Xn)>con



Approach to the continuum limit (3)

Effective field theory description:
Gn(Xla cee ,Xn) - <¢0(Xl) cee ¢0(Xﬂ)>con
a / 'y (60(x1) .- G0(x0) £1(¥))eon

+ az (Po(x1) - - p103k) - - - G0 (Xn))eon + O(3%)

@ (---) is defined w.r.t. continuum theory with Sp

@ the a-dependence is now explicit, up to logarithms, which are
hidden in the coefficients.

@ In perturbation theory one expects at /-loop order:

where e.g. P(a) = G, at fixed arguments.



Approach to the continuum limit (4)

Conclusions from Symanzik's analysis:

@ Asymptotically, cutoff effects are powers in a, modified by
logarithms;

@ In contrast to Wilson quarks, only even powers of a are
expected for

o bosonic theories (e.g. pure gauge theories, scalar field theories)

o fermionic theories which retain a remnant axial symmetry
(overlap, Domain Wall Quarks, staggered quarks, Wilson
quarks with a twisted mass term, etc.)

In QCD simulations a is typically varied by a factor 2

= logarithms vary too slowly to be resolved; linear or quadratic
fits (in a resp. a®) are used in practice.



Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson's plaquette action:[CP-PACS
coll., Aoki et al. '02 ] a=0.05 — 0.1 fm, experimental input:

mg, My, M,




Example 2: pion mass in N = 2 tmQCD

[ETM coll. Baron et al '09 ]
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Example 3: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al '02 ]

rM [ {
0e | ALPHA collaboration
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The 2d O(n) sigma model: a test laboratory for QCD

S=£> (0us)  s=(s1,...,8) =1

X7l'1‘

o like QCD the model has a mass gap and is asymptotically free

@ many analytical tools: large n expansion, Bethe ansatz, form
factor bootstrap, etc.

o efficient numerical simulations due to cluster algorithms.
= very precise data over a wide range of lattice spacing (a can
be varied by 1-2 orders of magnitude).
o Symanzik: expect O(a?) effects, up to logarithms
@ Large n, at leading [Caracciolo, Pelissetto '98 | and
next-to-leading [Knechtli, Leder, Wolff 05 ]:

82

P(a) ~ P(O) + p (C1 + o In(a/L))



A sobering result (1):

Numerical study of renormalised finite volume coupling to high
precision (n = 3) [Hasenfratz, Niedermayer '00, Hasenbusch et al.
'01, Balog et al. '09 ]
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@ Cutoff effects seem to be almost linear in a!

@ Is this just an unfortunate case?



A sobering result (2):

[Balog, Niedermayer & Weisz '09 ]
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A closer look (1)

[Knechtli, Leder, Wolff '05 ], plot of cutoff effects vs. a?/L?,

various n:

Y (uop, N,a/L) / o(ug, N)
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Asymptotic behaviour for larger n according to expectation, what

about n = 37



A closer look (2)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus '04 ]! Subtract & study pure cutoff effect [Balog,
Niedermayer, Weisz '09 ]
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A closer look (3)

Continuum limit for mass gap m(L) known analytically [Balog &
Hegedus '04 ]!
Subtract & study pure cutoff effect: ¥(2, ug,a/L) — o(2, up):
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A closer look (4) & solution of puzzle

[Balog, Niedermayer & Weisz '09 |

o performed two-loop calculation with both effective Symanzik
theory and lattice theory (various actions)

@ Matching of both sides and subsequent RG considerations

= Symanzik theory predicts for O(n) model leading O(a?)

behaviour: ,
5(a) o a* (In az)n/(n_ )

e compatible with large n result since lim,_oo{n/(n—2)} =1
e For O(3) model:

5(a) o< @® (In3(a%) + c1 In*(a®) + 2 In(a%) + 1) + O(a*)



A closer look (5)

Coefficient of O(a?) term [Balog, Niedermayer & Weisz '09 ]:

[ZualL)-ou)) L
S (5] (2] ~
. . — 73

w
T

Not exactly constant! Multiplied with a obtain “fake” linear
behaviour in a!



Yang-Mills theory and QCD

Recently, [N. Husung, P. Marquard and R. Sommer, 2020 ] have
obtained the powers of the logs modifying the a’-effects for
spectral quantities (e.g. glueball masses) in pure SU(3) gauge
theory (various lattice regularizations):
e find negative leading exponents of (—7/11, —63/55) of In(a) !
= Convergence to continuum is faster than a®
@ Work for QCD in progress, very interesting, keep tuned!
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Summary, approach to the continuum

@ Symanzik’s analysis is applicable beyond perturbation theory

@ Powers of a are accompanied by fractional powers of
logarithms; these are perturbatively computable due to
asymptotic freedom, using Symanzik's effective theory.

@ Lesson from O(3) model: logarithmic corrections to powers in
a can be large (a%In3(a));
However, results by Husung et al. in pure gauge theory and
QCD are re-assuring.

@ It helps to combine results from different regularisations:
renormalised quantities must have the same continuum limit

@ Numerical results in QCD: typically lattice spacing varied by a
factor 2, logarithms ignored (cannot be resolved).
= Fitting higher order polynomials in a ignoring the logarithms
has no theoretical basis and can be dangerous!



