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A remark on the scope of perturbation theory

The statement ”QCD at low energies cannot be treated
non-perturbatively due to the coupling being large” is only half of
the truth:

In QCD with massless quarks, all non-vanishing hadronic
masses (protons, glueballs,...) are proportional to the
Λ-parameter and thus non-analytic in the coupling!

⇒ not computable in perturbation theory whatever the size of
the coupling!

The chiral condensate is extracted from the 1-point function:

Σ = − lim
mq→0

lim
a→0

lim
L→∞
〈
(
ψ̄(x)ψ(x)

)
R
〉

Σ = 0 exactly in perturbation theory, order by order!



Momentum Subtraction Schemes (MOM)

Recall procedure in continuum perturbation theory:

example: renormalisation of the pseudoscalar density
Pa(x) = ψ(x)γ5

1
2τ

aψ(x):

Correlation functions in momentum space with external quark
states:〈

ψ̃(p)ψ̃(q)
〉

= (2π)4δ(p + q)S(p) quark propagator〈
ψ̃(p)P̃a(q)ψ̃(p′)

〉
= (2π)4δ(p + q + p′)S(p)Γa

P(p, q)S(p + q) ,

At tree-level:

Γa
P(p, q)|tree = γ5

1
2τ

a,

⇒ 1
24

3∑
a=1

tr {γ5τ
aΓa

P(p, q)|tree} = 1



Renormalised fields:

ψR = Zψψ, ψR = Zψψ, Pa
R = ZPP

a

⇒ renormalised vertex function:

Γa
P,R(p, q) = ZPZ

−2
ψ Γa

P(p, q)

typical MOM renormalisation condition (quark masses set to
zero; mass-independent scheme!):

Γa
P,R(p, 0)|µ2=p2 = γ5

1
2τ

a ⇒ ZPZ
−2
ψ

equivalently using “projector”:

1
24

3∑
a=1

tr
{
γ5τ

a Γa
P,R(p, 0)|µ2=p2

}
= 1

Determine Zψ either from quark propagator or use MOM
scheme for vertex function of a conserved current

ΓV ,R(p, q) = Z−2
ψ ΓV (p, q)



Summary: MOM schemes in the continuum

Renormalisation condions are imposed on vertex functions in
the gauge fixed theory with external quarks, gluons or ghosts.

The vertex functions are taken in momentum space; a
particular momentum configuration is chosen, such that the
vertex function becomes a function of a single momentum p;

MOM condition: a renormalised vertex function at subtraction
scale µ2 = p2 equals its tree-level expression,

⇒ mass independent scheme if quark masses = 0.

Definition of renormalised gauge coupling: take vertex
function of either the 3-gluon vertex, the quark-gluon vertex
or the ghost-gluon vertex.

Renormalisation constants depend on the chosen gauge!
Require renormalisation of quark, gluon and ghost fields.



RI/MOM Schemes (RI = Regularisation Independent;
MOM = Momentum Subtraction)

[Martinelli et al ’95 ]: mimick the procedure in perturbation theory:

choose Landau gauge, ∂µAµ = 0; can be implemented on the
lattice by a minimisation procedure

RI/MOM schemes are very popular: many collaborations use
it:

straightforward to implement on the lattice; many
improvements over the years regarding algorithmic questions
can often be used on the very same gauge configurations
which are produced for hadronic physics

Regularisation Independence (RI) means: correlation functions
of a renormalised operator do not depend on the
regularisation used (up to cutoff effects).



RI/MOM schemes, discussion

Suppose we have calculated a renormalised hadronic matrix
element of the multiplicatively renormalisable operator O

MO(µ) = lim
a→0
〈h|OR(µ)|h′〉

Provided µ is in the perturbative regime, one may evaluate
the MOM scheme in continuum perturbation theory and
evolve to a different scale:

MO(µ′) = U(µ′, µ)MO(µ),

U(µ′, µ) = exp

{∫ ḡ(µ′)

ḡ(µ)

γO(g)

β(g)
dg

}

N.B. Continuum perturbation theory is available to 3-loops in
some cases!



RI/MOM schemes, what could go wrong?

The scale µ could be too low; need to hope for a “window”

ΛQCD � µ� a−1

In practice scales are often too low: non-perturbative effects
(e.g. pion poles, condensates) are then eliminated by fitting
to expected functional form (from OPE in fixed gauge);

⇒ errors are difficult to quantify!

Gribov copies: the (Landau) gauge condition does not have a
unique solution on the full gauge orbit

Perturbative calculations are made using

infinite volume
vanishing quark masses

⇒ difficult for numerical simulations especially in full QCD.



A prominent non-perturbative effect: the pion pole

[Martinelli et al. ’95 ]

Consider the 3-point correlation function for Pa used in MOM
condition:∫

d4x

∫
d4y e−ipx〈ψ(0)γ5

1
2τ

bψ(x)Pa(y)〉

The contribution for x ≈ 0 is proportional to the pion
propagator at vanishing momentum:∫

d4y〈Pb(0)Pa(y)〉 ∝ 1

m2
π + q2

∣∣∣∣
q2=0

Insertion into the MOM condition at µ2 = p2 yields

ZMOM
P ∼ A

µ2m2
π

+ . . .

⇒ the chiral limit is ill-defined, as m2
π ∝ mq

(cf. lectures on χPT)!



RI/MOM scheme, example 1

[ETMC collaboration, talk by P. Dimopoulos at Lattice ’07 ]
twisted mass QCD with Nf = 2, subtraction of pion pole à la
[Giusti, Vladikas ’00 ]

While ZS shows the expected plateau, ZP shows some slope even
after subtraction of the pion pole (cutoff effects?)



A prominent non-perturbative effect: the pion pole

pion poles; in the original MOM scheme the problem is most
severe due to the kinematical choice q = 0

⇒ q = 0 originally dictated by available continuum perturbation
theory!. Requires a subtraction of this effect!

Major improvement: RI/SMOM scheme [Aoki et al. ’08;
Sturm et al. ’09 ]): quark momenta p and p′ and the vertex
momentum q are taken equal in magnitude but non-zero
(non-exceptional momentum configuration) The pion pole
contribution becomes

ZSMOM
P ∼ A

µ2(µ2 + m2
π)

and is finite in the chiral limit mπ = 0 and suppressed by µ4

rather than µ2.



RI/SMOM scheme, example

[A. Lytle (HPQCD) ’15 ] quark mass renormalization with HISQ:

Comparison between RI/MOM (left) and RI/SMOM (right) for
scalar and pseudo-scalar vertex functions
⇒ Much reduced sensitivity to pion pole!



RI/MOM scheme, example 2

[Huey-Wen Lin ’06 ] study of quark gluon vertex:
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Comparison of the quark vertex function in Landau gauge,
fixed in two different ways on the same ensemble of gauge
configurations

Influence of Gribov copies can be sizable!



RI/MOM schemes; Summary

RI/(S)MOM schemes are widely used and have allowed for
many successful applications!

Non-perturbative effects like the pion pole are either
subtracted or taken into account by fits to the expected
p2-behaviour; error estimates are difficult!

A warning from the quark-gluon vertex: the effect of Gribov
copies should be monitored!

Finite volume and quark mass effects are often found to be
small.

Since the method can be applied at little cost on the existing
configurations for hadronic physics, it can always be tried!



Improvement of RI/MOM schemes

Many technical improvements over the last 20 years:

RI/SMOM scheme (non-exceptional momenta):
reduces the problem with Goldstone poles;
Many continuum perturbation theory results now available up
to 3-loop order.

Can one reach higher scales? Small steps in scale may be
feasible [Arthur & Boyle ’10 ]; in principle need to promote to
finite volume scheme: set µ = 1/L, however:

periodic b.c’s: need gauge fixing on the torus (complicated)
twisted gauge field b.c.’s? constraints on Nc and Nf

perturbation theory to be re-done from scratch (finite volume
is part of the scheme!)

use gauge invariant correlation functions ⇒ no Gribov copies;
PT more difficult, larger cutoff effects?



Finite volume schemes, requirements

Wanted: renormalization scheme which

is defined in a finite space-time volume

is non-perturbatively defined;

can be expanded in perturbation theory (up to 2-loop) with
reasonable effort;

is gauge invariant;

is quark mass-independent.

can be evaluated by numerical simulation!

⇒ use the Schrödinger functional!



The Schrödinger functional (formal continuum)

The Schrödinger functional appears naturally in the Schrödinger
representation of QFT (Symanzik ’81), as the time evolution kernel
when integrating the functional Schrödinger equation:
Wave functional in Dirac’s notation (A,A′: field configurations at
(Euclidean) times 0,T ):

ψ[A] ≡ 〈A|ψ〉

ψ′[A′] =

∫
D[A]〈A′|e−TH|A〉〈A|ψ〉

The Schrödinger functional is a functional of the initial and final
field configuration:

Z[A,A′] = 〈A′|e−TH|A〉 =

∫
D[φ]e−S .

The Euclidean field φ satisfies Dirichlet boundary conditions

φ(x)|x0=0 = A(x) φ(x)|x0=T = A′(x)



The Schrödinger functional is an example of a field theory defined
on a manifold with boundary ⇒ problems/questions:

Translation invariance is broken ⇒ momentum is not
conserved.

Conventional proofs of perturbative renormalisability rely on
power counting theorems in momentum space: not applicable
here!

Heuristic arguments by Symanzik:

A renormalisable QFT remains renormalisable when considered on
a manifold with boundary. Besides the usual parameter and field
renormalisations one just needs to add a complete set of local
boundary counterterms to the action, i.e. polynomials in the fields
and its derivatives of dimension 3 or less, integrated over the
boundary.
Scalar φ4

4-theory, boundary at x0 = 0:∫
x0=0

d3xφ2,

∫
x0=0

d3xφ∂0φ



The Schrödinger functional in QCD (formal continuum)

Definition for gauge theories and QCD is analogous: The
Schrödinger functional is the functional integral on a hyper
cylinder,

Z =

∫
fields

e−S

with periodic boundary conditions in spatial directions and
Dirichlet conditions in time.

Boundary conditions for gluon and quark
fields:

P± = 1
2 (1± γ0),

P+ψ(x)|x0=0 = ρ P−ψ(x)|x0=T = ρ′

ψ(x)P−|x0=0 = ρ̄ ψ(x)P+|x0=T = ρ̄ ′,

Ak(x)|x0=0 = Ck Ak(x)|x0=T = C ′k



Correlation functions are then defined as usual

〈O〉 =

{
Z−1

∫
fields

O e−S
}
ρ=ρ′=0; ρ̄=ρ̄′=0

O may contain quark boundary
fields

ζ(x) ≡ P−ζ(x) =
δ

δρ̄(x)

ζ(x) ≡ ζ(x)P+ =− δ

δρ(x)

ζ ′(x) ≡ P+ζ
′(x) =

δ

δρ̄ ′(x)

ζ ′(x) ≡ ζ ′(x)P+ =− δ

δρ ′(x)

⇒ the boundary values of the quark fields are used as external
sources



Properties of the QCD Schrödinger functional

The SF is renormalisable: as usual for coupling and quark
masses; the boundary quark fields require a multiplicative
renormalisation.

absence of fermionic zero modes: numerical simulations at
zero quark masses are possible!

For some choices of Ck and C ′k it can be shown that the
induced background gauge field is an absolute minimum of
the action ⇒ perturbation theory is straightforward and seems
practical at least to 2-loop order.

As Ck and C ′k are held fixed only spatially constant gauge
transformations are possible at the boundaries!:

Ck(x)→ Λ(x)Ck(x)Λ−1(x) + Λ(x)∂kΛ−1(x)

i.e. the allowed Λ(x) ∈ SU(N) must be x-independent and
commute with Ck .



Therefore, bilinear boundary quark sources such as

Oa =

∫
d3yd3z ζ(y)γ5

τ a

2 ζ(z), O′a =

∫
d3yd3z ζ ′(y)γ5

τ a

2 ζ
′(z)

are gauge invariant!

Typical gauge invariant correlation functions are then

fP(x0) = −1
3

3∑
a=1

〈Pa(x)Oa〉, fA(x0) = −1
3

3∑
a=1

〈Aa
0(x)Oa〉,



⇒ convenient in perturbation theory: in contrast to a periodic or
infinite volume where gauge invariant fermionic correlation
functions lead to one-loop diagrams at lowest order, e.g.

gPP(x0) = −a3
∑
x

3∑
a=1

〈Pa(x)Pa(0)〉

dimensional analysis ⇒ at short distances one finds the
asymptotic behaviour (up to logarithms):

gPP(x0) ∼ const

(x0)3
, fP(x0) ∼ const

expect

small cutoff effects for fP(x0) due to mild x0-dependence
good signal in numerical simulations.



More on the renormalisability of the SF

no gauge invariant dimension ≤ 3 counterterm exists, the pure
gauge SF is finite after renormalisation of the coupling
constant

continuum quark action with SF boundary conditions at
tree-level:

Sf =

∫
d4x ψ

(
1
2D/
↔

+ m
)
ψ − 1

2

∫
x0=0

d3xψψ − 1
2

∫
x0=T

d3xψψ

Exercise:

Show that the boundary terms are necessary if one requires the
existence of smooth solutions to the equations of motion with SF
boundary conditions

The counterterms are linear in the boundary fields

ψ(x)ψ(x)|x0=0 = ρ̄(x)P−ψ(0, x) + ψ(0, x)P+ρ(x),

ψ(x)ψ(x)|x0=T = ρ̄ ′(x)P+ψ(T , x) + ψ(T , x)P−ρ
′(x),



More on the renormalisability of the SF

The only dimension 3 counterterm with correct symmetries is
ψψ

Time reversal symmetry requires the same coefficient at
x0 = 0,T

This counterterm can thus be absorbed in a multiplicative
rescaling of ρ, ρ ′, ρ̄, ρ̄ ′ by the same renormalization constant:

ρR = Zρρ, ρ̄R = Zρρ̄, ρ ′R = Zρρ
′, ρ̄ ′R = Zρρ̄

′

Consequently, setting Zζ = Z−1
ρ :

ζR = Zζζ, ζ ′R = Zζζ
′, ζR = Zζζ, ζ ′R = Zζζ

′,

Hence sources like Oa are multiplicatively renormalised by Z 2
ζ



Definition of the SF coupling [Lüscher et al. ’92 ]

Choose abelian and spatially constant boundary gauge fields:

Ck =
i

L

φ1 0 0
0 φ2 0
0 0 φ3

 , C ′k =
i

L

φ′1 0 0
0 φ′2 0
0 0 φ′3

 , k = 1, 2, 3,

with angles taken to be linear functions of a parameter η:

φ1 = η − π
3 , φ′1 = −φ1 − 4π

3 ,

φ2 = −1
2η, φ′2 = −φ3 + 2π

3 ,

φ3 = −1
2η + π

3 , φ′3 = −φ2 + 2π
3 .

The gauge action has an absolute minimum for:

B0 = 0, Bk =
[
x0C

′
k + (L− x0)Ck

]
/L, k = 1, 2, 3.

i.e. other gauge fields with the same action must be gauge
equivalent to Bµ



Definition of the SF coupling

Define the effective action of the induced background field

Γ[B] = − lnZ[C ,C ′]

In perturbation theory the effective action has the expansion

Γ[B] ∼ g−2
0 Γ0[B] + Γ1[B] + O(g2

0 )

Definition of the SF coupling:

ḡ2(L) =
∂ηΓ0[B]|η=0

∂ηΓ[B]|η=0

∣∣∣∣
mq,i=0

⇒ ḡ2(L) = g2
0 + O(g4

0 )

b.c.’s induce a constant colour electric field:

G0k = ∂0Bk =
Ck − C ′k

L

⇒ The coupling is defined as “response coefficient” to a
variation of a constant colour electric field.



Renormalisation of operators in the SF scheme (1)

Example: renormalisation of Pa = ψγ5
τ a

2 ψ:

In this case we set Ck = C ′k = 0, i.e. trivial background field
B = 0

Define correlation functions

fP(x0) = −1
3〈O

aPa(x)〉, f1 = − 1
3L6 〈OaO′a〉



Renormalisation of operators in the SF scheme (2)

Renormalised correlation functions:

fP,R(x0) = Z 2
ζ ZP fP(x0), f1,R = Z 4

ζ f1,

set T = L, m = 0, x0 = L/2, and impose

ZP(g0, L/a)
fP(L/2)√

f1
=

fP(L/2)√
f1

∣∣∣∣
g0=0

similarity with MOM schemes: the renormalised amplitude at
µ = L−1 equals its tree-level expression

The ratio is formed to cancel any Zζ .

definition of running quark mass: m(L) = Z−1
P (L)m.



Step Scaling Functions

The aim is to construct the Step Scaling Functions σ(u) and
σP(u):

σ(u) = ḡ2(2L)|u=ḡ2(L),

σP(u) = lim
a→0

ZP(g0, 2L/a)

ZP(g0, L/a)

∣∣∣∣
u=ḡ2(L)

These are related to the usual RG functions:∫ √u
√
σ(u)

dg

β(g)
= ln 2 σP(u) = exp

∫ √u
√
σ(u)

τ(g)

β(g)
dg

One thus considers a change of scale by a finite factor s = 2;
RG functions tell us what happens for infinitesimal scale
changes.



Lattice approximants Σ(u, a/L) for σ(u)

choose g0 and L/a = 4,
measure ḡ2(L) = u (this
sets the value of u)

double the lattice and
measure

Σ(u, 1/4) = ḡ2(2L)

now choose L/a = 6 and
tune g ′0 such that
ḡ2(L) = u is satisfied

double the lattice and
measure

Σ(u, 1/6) = ḡ2(2L)

and so on ...



Continuum extrapolation of the SSF [ALPHA ’05 ]



The SSF in the continuum limit

[ALPHA coll., Della Morte et al ’05 ]



The running of the SF coupling

[ALPHA coll., Della Morte et al ’05 ]



Determination of the Λ-parameter

The formula

Λ = µ (b0ḡ
2)−b1/2b2

0 exp

{
− 1

2b0ḡ2

}
× exp

{
−
∫ ḡ

0
dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}
holds for any value of µ. We may use it at Lmin to obtain

ΛLmin = f (ḡ(Lmin))

The function f (g) can be evaluated at g = ḡ(Lmin) since this
is deep in the perturbative region. The integral in the
exponent∫ ḡ

0
dx

[
b2b0 − b2

1

b3
0

x + O(x3)

]
=

b2b0 − b2
1

2b3
0

ḡ2 + O(ḡ4)

may thus be evaluated using the β-function at 3-loop order.
Since Lmax = 2nLmin one knows LmaxΛ
still need FπLmax



Matching to a low energy scale

Ideally one would like to compute e.g. FπΛ, and take
Fπ = 132MeV from experiment

What is required? The scale Lmax is implicitly defined:

ḡ2(Lmax) = 4.84 ⇒ (Lmax/a)(g0)

Setting Lmax/a = 6, 8, 10, . . . one then finds corresponding
values of the bare coupling (at fixed g0 some interpolation of
Lmax/a will be necessary instead)

One must then be able to compute aFπ in a large volume
simulation at the very same values of the bare coupling:

FπΛ = lim
g0→0

(Lmax/a)(g0)(aFπ)(g0)

One thus needs a range of g0 where both can be computed,
aFπ and ḡ(Lmax)

Remark: intermediate results are often quoted in terms of
Sommer’s scale r0, rather than Fπ.



Results for QCD with Nf = 0 and Nf = 2 quark flavours

The scale r0 [R. Sommer ’93 ] is obtained from the force F (r)
between static quark and antiquark separated by a distance r :

r2
0F (r0) = 1.65

The r.h.s. was chosen so that phenomenological estimates
from potential models yield r0 = 0.5 fm.

Recent result for Nf = 2 ([ALPHA ’12 ]): FK = 155MeV
implies r0 = 0.503(10) fm (at physical pion mass!).

Results for Λ using r0 = 0.5 fm [ALPHA ’99-’12 ]

Λ
(2)

MS
r0 = 0.789(52), Λ

(2)

MS
= 310(20)MeV

Λ
(0)

MS
r0 = 0.602(48), Λ

(0)

MS
= 238(19)MeV



The running quark mass

Coupled evolution of the running mass and the coupling:

m(2L) = σm(u)m(L), σm(u) = 1/σP

ḡ2(2L) = σ(u)

Once the running coupling is known in a range [u0, un],

u0 = ḡ2(Lmin), uk = ḡ2(2kLmin), k = 1, 2, . . . , n

determine σm(u) for the same range of couplings: evolution
of quark mass and coupling recursively

m(2kLmin)/m(2k−1Lmin) = σm(uk), k = 1, 2, . . . , n

one obtains m(2Lmax)/m(Lmin)

Extract m(Lmin)/M using PT as for Λ-parameter



Running mass in the SF scheme [ALPHA ’05 ]
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(a/L)2

Σ P
(u

,a
/L

)



Relation to bare quark masses

In practice with Wilson type quarks, one avoids the additive
renormalisation of the bare quark mass parameter by replacing
it by a measured bare mass mPCAC from the (bare) PCAC
relation:

mPCAC
def
=
〈∂µAa

µ(x)O〉
2〈Pa(x)O〉

The running quark mass is then related to mPCAC

m(L) = Z−1
P (g0, L/a)ZA(g0)︸ ︷︷ ︸

known factors

mPCAC(g0)︸ ︷︷ ︸
measured

,

Combine results,

M = ZM(g0)mPCAC(g0)

and take the continuum limit g0 → 0.



Strange quark mass

The most recent Nf = 2 result for the strange quark mass using
this strategy ([ALPHA ’12 ]):

Ms = 138(3)(1)MeV ⇒ mMS(µ = 2GeV) = 102(3)(1)MeV

Quoted errors are statistical and systematic;

Note: Except for quenching of the strange quark the ALL
systematic errors have been addressed!



Concluding remarks

The recursive finite volume technique has completely
eliminated the problem with large scale differences.

Physical results require a matching calculation at a low energy
scale: it is crucial to have a range in bare couplings where
both, the renormalisation conditions and the hadronic input
can be computed

Whether perturbation theory for the running
coupling/operator is working well or not down to low scales is
not so important; you would not know this beforehand!
Most recent state of the art: QCD with Nf = 3 & some
further technical refinements:

gradient flow coupling in finite volume scheme at low energies
Global fits to the step-scaling function
Improved control of cutoff effects
use of the flow time scale t0 instead of r0

Many more applications in the literature: all quark bilinear
operators, ∆F = 2 4-quark operators, HQET,..


