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Topics:

Results for the SF coupling between 1/L0 ≈ 4GeV and O(100) GeV

Extraction of L0Λ(3) & tests of perturbation theory

Summary



The QCD Λ-parameter vs. αs(µ) = ḡ2(µ)/4π

The coupling αs(µ) can be traded for its associated Λ-parameter:

Λ = µϕ(ḡ(µ)) = µ
[
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]− b1

2b2
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exact solution of Callan-Symanzik equation:

(
µ ∂
∂µ

+ β(ḡ) ∂
∂ḡ

)
Λ = 0

Number Nf of massless quarks is fixed.

If the coupling ḡ(µ) non-perturbatively defined so is its β-function!

β(g) has asymptotic expansion β(g) = −b0g3 − b1g5 − b2g7..

b0 = (11− 2
3Nf)/(4π)2, b1 = (102− 38

3 Nf)/(4π)4, . . .

b0,1 are universal, scheme-dependence starts with 3-loop coefficient b2.

Scheme dependence of Λ almost trivial:

g2
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4
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ΛX
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= ecXY/2b0

⇒ can use ΛMS as reference (even though the MS-scheme is purely perturbative!)



A family of SF couplings I
Dirichlet b.c.’s in Euclidean time, abelian boundary values Ck, C′k:

Ak(x)|x0=0 = Ck(η, ν), Ak(x)|x0=L = C′k(η, ν)
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⇒ induce family of abelian, spatially constant background fields Bµ with

parameters η, ν (→ 2 abelian generators of SU(3)):

Bk(x) = Ck(η, ν) +
x0

L

(
C′k(η, ν)− Ck(η, ν)

)
, B0 = 0.

Induced background field is unique up to gauge equivalence

Effective action

e−Γ[B] =
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g2

0
Γ0[B] + Γ1[B] + O(g2

0)

Define
1

ḡ2
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⇒ 1-parameter family of SF couplings as response of the system to a change of a
colour-electric background field. [Lüscher et al. ’92]



A family of SF couplings II

ν-dependence is explicit, obtained by computing ḡ2 ≡ ḡ2
ν=0 and v̄ at ν = 0:

1
ḡ2
ν

=
1
ḡ2 − νv̄

relation between couplings at ν and ν = 0 gives exact ratio:

rν = Λ/Λν = exp(−ν × 1.25516)

The β-function is known to 3-loops:

(4π)3 × b2,ν = −0.06(3)− ν × 1.26

N.B.: values ν of O(1) look perfectly fine!

infrared cutoff (finite volume) ⇒ no renormalons; secondary minimum of the
action:

exp(−2.62/α) ' (Λ/µ)3.8

Cutoff effects: O(a4) at tree-level, but O(a) effects from the boundaries:

subtracted perturbatively
variation of coefficients treated as systematic error, continuum extrapolations
∝ a2



SSF in the continuum limit
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⇒ Significantly improved precision compared to previous work with Nf = 0, 2, 3, 4



Computation of L0Λ

Define L0 implicitly by
ḡ2(L0) = 2.012 = u0

Use the non-perturbative continuum step scaling function σ(u):

un−1 = σ(un), n = 1, . . . , ⇒ un = ḡ2
(
2−nL0

)
At scale 2−nL0 obtain L0Λ using the perturbative β-function:

L0Λ = 2n
[
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Do the same for schemes ν 6= 0 using the continuum relation:

1
ḡ2
ν(L0)

=
1

2.012
− ν × 0.1199(10)

⇒ check accuracy of perturbation theory: L0Λ must be independent of ν and
number of steps, n !



Result for L0Λ
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All results agree around α = 0.1, we quote

L0Λ = 0.0303(7) ⇒ L0ΛNf=3
MS

= 0.0791(19) (error 2.4%)

Recall L0 ≡ Lswi is defined implicitly by ḡ2(L0) = 2.012.



Alternative test via the MS-scheme I

Idea: Perturbatively match the SF coupling to the MS-coupling then evaluate the
Λ-parameter using the 5-loop β-function

Relation between couplings, allowing for a scale factor s:

4πα
MS

(s/L) ≡ ḡ2
MS

(L/s) = ḡ2
ν(L) + pν1(s)ḡ4

ν(L) + pν2(s)ḡ6
ν(L) + O(ḡ8)

Same as earlier, except now in the MS scheme:

ΛMSL0 = sL0
L
ϕ
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[
ḡ
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= s 2nϕ
MS

[√
ḡ2
ν(L) + pν1(s)ḡ4

ν(L) + pν2(s)ḡ6
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]
,

expect to see independence of the number of steps n, scale factor s and
parameter ν.

Look at ν = 0, depdendence on n and s.

Note: The neglected order for Λ:

∆g2 dϕ
dg2 ∝ ∆g2 {gβ(g)}−1 = ∆g2 ×O(g−4)

⇒ truncation error: O(g8)×O(g−4) = O(g4) = O(α2).



Alternative test via the MS-scheme II

α(sq) = αν(q) + cν1(s)α2
ν + cν2(s)α3

ν(q) + ..., pνi = cνi /(4π)i

parameters: ν = 0, s∗ ≈ 3
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Choice of scale factor is important, coefficients can get large.

“fastest apparent convergence” principle: c1(s∗) = 0 which means
s∗ = ΛMS/Λ = 2.612 ≈ 3 seems like a good idea.



Alternative test via the MS-scheme III

α(sq) = αν(q) + cν1(s)α2
ν + cν2(s)α3

ν(q) + ..., pνi = cνi /(4π)i

parameters: ν = −0.5, s∗ ≈ 5
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Alternative test via the MS-scheme IV

variation of the scale factor s ∈ [s∗/2, 2s∗]

0.075

0.08

0.085

0.09

0 0.005 0.01 0.015 0.02 0.025 0.03

L
0
Λ

M
S

α2

Final result
ν = −0.5

ν = 0
ν = 0.3

⇒ may significantly underestimate the systematic error!



Summary, tests of perturbation theory

The determination of αs is well-suited for the lattice approach;

The systematics can be well controlled by combining technical tools developed
over the last 25 years:

finite volume renormalization schemes and recursive step-scaling methods
non-perturbative Symanzik improvement
perturbation theory adapted to finite volume; relation between SF and
MS-coupling known to 2-loop order!

⇒ Completely solves the problem of large scale differences;
perturbation theory at low energies can be avoided!

Turning this around: many opportunities to test perturbation theory at high
energies!

⇒ with hindsight: estimates of perturbative truncation errors require some luck!


