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Topics:

@ Results for the SF coupling between 1/Ly = 4GeV and O(100) GeV
o Extraction of LoA(®) & tests of perturbation theory

e Summary



The QCD A-parameter vs. a, () = g%(p) /4w

The coupling as () can be traded for its associated A-parameter:
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o exact solution of Callan-Symanzik equation: (u% + ﬁ(g)@) A=0
o Number N¢ of massless quarks is fixed.
o If the coupling g(u) non-perturbatively defined so is its S-function!
e f3(g) has asymptotic expansion 5(g) = —bog® — b1g® — bag” ..
bo = (11 — 2Ny)/(4m)?, by = (102 — 38 Ng)/(4m)*,
bo,1 are universal, scheme-dependence starts with 3-loop coefficient b2.

@ Scheme dependence of A almost trivial:

A
g% (1) = g% () + exyoy () + ... = ﬁ = e“xy/2b0

= can use Ayg as reference (even though the MS-scheme is purely perturbative!)



A family of SF couplings |

Dirichlet b.c.'s in Euclidean time, abelian boundary values Cy, CI’C:
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induce family of abelian, spatially constant background fields B, with
parameters n,v (— 2 abelian generators of SU(3)):

Bi(x) = Cr(nv) + 7 (CLin.v) = Culn.v)) . Bo=0.

Induced background field is unique up to gauge equivalence

Effective action
e TPl = / D[A,, e S1A¥%] T[B] = To[B] + I'1[B] + O(g3)
0

1 8,T[B]

g2(L) ~ 9yTo[B]

(OnS)

= 9,T0[B]

n=0 n=0

1-parameter family of SF couplings as response of the system to a change of a
colour-electric background field. [Liischer et al. '92]



A family of SF couplings Il

o v-dependence is explicit, obtained by computing g% = !712,:0 and v at v = O:
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@ relation between couplings at v and v = 0 gives exact ratio:

r, = A/A, = exp(—v x 1.25516)

@ The B-function is known to 3-loops:
(47m)3 x ba,, = —0.06(3) — v x 1.26
N.B.: values v of O(1) look perfectly fine!

o infrared cutoff (finite volume) = no renormalons; secondary minimum of the
action:
exp(—2.62/a) ~ (A/u)>8

o Cutoff effects: O(a*) at tree-level, but O(a) effects from the boundaries:

o subtracted perturbatively

e variation of coefficients treated as systematic error, continuum extrapolations
2
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SSF in the continuum
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= Significantly improved precision compared to previous work with Ny = 0,2, 3,4



Computation of LoA

o Define Lo implicitly by
G2 (Lo) = 2.012 = ug

o Use the non-perturbative continuum step scaling function o(u):
— — —_ =2 -n
Up—1 =0(up), n=1,..., = up=9g (2 Lo)

o At scale 27" Lg obtain LoA using the perturbative S-function:

_b 1
LoA = 2n[b0§2(2_nL0)] nge 2b0g*(27 " Lo)
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o Do the same for schemes v # 0 using the continuum relation:

1 1
——— = —— — v x 0.1199(10)
g2(Lo)  2.012

= check accuracy of perturbation theory: LoA must be independent of v and
number of steps, n !



Result for LgA
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@ All results agree around a = 0.1, we quote

LoA = 0.0303(7) = LOA%=3 =0.0791(19)  (error 2.4%)

Recall Lo = Lswi is defined implicitly by g2(Lo) = 2.012.



Alternative test via the MS-scheme |

Idea: Perturbatively match the SF coupling to the MS-coupling then evaluate the
A-parameter using the 5-loop S-function

o Relation between couplings, allowing for a scale factor s:

dAmac(s/L) = g2 (L/s) = go (L) +p{ ()3, (L) + p5 ()3 (L) + O(5°)

@ Same as earlier, except now in the MS scheme:

AtsLo = o [ (L/9)] = 52 er [ VD) + @D + P ()78 (L)

@ expect to see independence of the number of steps n, scale factor s and
parameter v.

@ Look at ¥ = 0, depdendence on n and s.

o Note: The neglected order for A:
Ag® 25 o Ag® {gB(g)} ! = Ag® x O(g™?)

= truncation error: O(g®) x O(g™*) = O(g*) = O(a?).



Alternative test via the MS-scheme |l

a(sq) = o, (g) +cf(s)ag +c5(s)ag(a) + ... pf =cf/(4m)’

parameters: v =0, s* ~ 3
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o Choice of scale factor is important, coefficients can get large.

o “fastest apparent convergence” principle: c¢1(s*) = 0 which means
* = Aypg/A = 2.612 = 3 seems like a good idea.



Alternative test via the MS-scheme 1|

a(sq) = o, (q) + ¢f (s)ap + 5 (s)ap(q) + .., P =} /(4m)’
parameters: v = —0.5, s* =~ 5
Final result s s
s=1 % 28" v
SR §/2 —m— s~ 35" —e—i 8

0.09 : ‘

PO E |
H

LoAm

0.075 -

) . . I . . . N
f 0 2 4 6 8 10 12 14

1 1 s

1 1
0 0.005 0.010 0.015 0.02  0.025

o?

0.07




Alternative test via the MS-scheme IV

variation of the scale factor s € [s*/2, 25*]
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= may significantly underestimate the systematic error!




Summary, tests of perturbation theory

@ The determination of oy is well-suited for the lattice approach;

@ The systematics can be well controlled by combining technical tools developed
over the last 25 years:
o finite volume renormalization schemes and recursive step-scaling methods
e non-perturbative Symanzik improvement
o perturbation theory adapted to finite volume; relation between SF and

MS-coupling known to 2-loop order!

= Completely solves the problem of large scale differences;
perturbation theory at low energies can be avoided!

o Turning this around: many opportunities to test perturbation theory at high
energies!

= with hindsight: estimates of perturbative truncation errors require some luck!



